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CHAPTER 1 

INTRODUCTION 

 

1.1.1 Hydrogen as an Alternative Energy Source 

One of the main energy sources for the world population is non-renewable fossil fuels which will 

be depleted within the next hundred years.
1
 Existing fossil fuel sources such as natural gas and 

coal generate carbon dioxide as a byproduct after usage. Thus, increased CO2 emissions 

(Scheme 1.1) are responsible for the massive climate changes observed in the last century. The 

looming energy crisis resulting from this continuous depletion, along with the rapid increase of 

carbon dioxide in the atmosphere have driven extensive research for obtaining carbon-neutral 

energy from affordable and abundant sources.
1
 

 

 

 

 

 

 

 

 

http://www.globalissues.org/article/233/climate-change-and-global-warming-introduction 

Scheme 1.1. CO2 emmisions over the last few hundred years.
1
 

                Therefore, there is a demand to develop renewable energy sources that will reduce CO2  

http://www.globalissues.org/article/233/climate-change-and-global-warming-introduction
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emissions. Dihydrogen (H2) is expected to be a clean and sustainable energy source
 
to meet the 

ever increasing global energy requirements, while addressing concerns over climate change.
1
 

Hydrogen is the lightest and the most abundant element in Earth’s crust, but is not found in the 

pure gaseous form instead appear with other elements in various hydrocarbons and water. 

Gaseous dihydrogen can be generated by either methane reforming or water electrolysis 

reactions, respectively. 

CH4 + H2O → CO + 3 H2   (reforming)  

2 H2O(l) → 2 H2(g) + O2(g) (electrolysis) 

Dihydrogen is capable of generating energy with net zero pollution,
1
 thus it is suitable as an 

alternative energy source. Hydrogen can also be used in many energy-related applications, such 

as in fuel cells to react with oxygen to generate water and electrical energy.
1
 Water can then be 

recycled for general purposes such as drinking or bathing and also to regenerate hydrogen. The 

use of hydrogen as fuel has been found in many practical applications as in many hybrid cars. 

Water is an affordable and abundant source of hydrogen and in order for hydrogen to have 

practical economical use as a fuel, it has to be generated from such a source. However, two 

potential challenges are present regarding the use of hydrogen: (i) the efficient generation, and 

(ii) the proper storage. Therefore, several research groups are investigating efficient hydrogen 

generation by splitting water. On the other hand, the effective storage of hydrogen is 

challenging.
2
 Several labs have designed and synthesized metallo-organic frameworks (MOFs) 

with appropriate pore size to store hydrogen.
2
 We will not discuss storage in detail, but several 

reviews have addressed the issue.
2
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1.1.2 Water Splitting to Generate Dihydrogen 

Water is a widely available and an affordable potential source of dihydrogen. Thus, there is 

extensive ongoing research towards splitting water efficiently into its constituents, hydrogen and 

oxygen gas. Water splitting is a difficult process because of its thermodynamic limitations and 

multielectronic nature.
3
 Electronically there are two steps in water splitting, namely, (i) a four 

electron oxidation of water to generate oxygen and proton and (ii) a two electron reduction of 

protons (H
+
) to generate hydrogen gas. To achieve effective water splitting, it is necessary to 

understand the electronic processes governing water oxidation and proton reduction. Equations 1 

and 2 summarize these steps. 

                               2 H2O              O2 + 4 H
+ 

+ 4 e
-
     (1)      E

0
: -1.23 V vs. SHE

 

                               4 H
+ 

+ 4e
-                      

2 H2              (2)      E
0
: 0 V vs. SHE 

 

Both of these steps are energy-demanding due to the uphill nature of the reactions.  

Thermodynamically, water can be oxidized to dioxygen at -1.23 V, whereas protons can be 

reduced to hydrogen at 0 V vs. the standard hydrogen electrode (SHE) at pH zero and 25°C. 

Therefore, the overall water splitting process requires E
0 

of -1.23 V, making the free energy 

change (ΔG) positive for the reaction. Thus, the splitting of water to hydrogen and oxygen 

involves 56.64 kcal/mol of energy and is thermodynamically unfavorable (Scheme 1.2).
1
 Water 

oxidation involves multiple proton-coupled electron transfers (PCET) combined with the O-O 

bond formation, making this whole process fairly complicated. On the contrary, green plants 

oxidize water to dioxygen efficiently in Photosystem-II, exploiting a multimetallic [Mn4Ca] 

cluster.
4
 Hydrogen is commercially produced from natural gas instead of water due to the energy 

requirements associated with the process. On the contrary, [FeFe] and [FeNi] hydrogenase can 

reduce protons to dihydrogen very efficiently.
5
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Scheme 1.2. Schematic diagram of the Gibbs free energy change (ΔG) involved with water 

splitting. 

 

1.1.3 Generation of Hydrogen from Water in Nature 

Despite the thermodynamic limitations associated with the water splitting process, green plants 

are able to split water to oxygen and hydrogen gas very efficiently. In the Photosystem-II, 

sunlight induces initial electron transfer from a chlorophyll photosensitizer to the quinone 

electron acceptor through a tyrosine redox-mediator and generates a positive hole in the 

photosensitizer. This hole can be subsequently transferred to the multimetallic [Mn4Ca] catalytic 

center by further electron transfer (Scheme 1.3). Multiple electron transfers from the catalytic 

site can generate high-valent manganese species which can act as the active species for water 

oxidation catalysis. Subsequent formation of two high-valent manganese-oxo species followed 

by oxygen generation is the typical pathway of operation.
4
 The difficulties of multiple proton-

coupled electron transfer steps combined with O-O bond formation are overcome by the use of 

multimetallic centers and redox mediators coupled with sequential electron transfer in the right 

direction.
4
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Scheme 1.3. Simplified schematic representation of electron transfer processes between different 

components of the Photosystem-II. It is adapted from reference 4b. 

 

On the other hand, [FeFe] and [NiFe] hydrogenase enzymes are capable of reducing protons to 

hydrogen at low overpotentials through multistep pathways.
5
 These bimetallic active sites 

typically contain sulfur-bridged iron-iron or iron-nickel clusters coordinated with carbon 

monoxide or cyanide ligands. An adjacent electron donor or redox mediator such as ferridoxin 

(Fe4S4 cluster) is typically bound with the active site (Figure 1.1). Sequential electron transfer to 

the metal and the ligand centers (ferridoxin) coupled with amine nitrogen induced hydrogen-

bridged pathway generates the active species, which subsequently produces hydrogen. There are 

typically three kind of hydrogenases: [FeFe], [NiFe] and [Fe]-only.
5
 In general, [FeFe] 

hydrogenase works better than [NiFe] hydrogenases in terms of hydrogen production activity. 

One such example of [FeFe] hydrogenase is found in clostridium pasteurianum bacteria, where it 

can generate hydrogen from water with a massive 10,000 s
−1

 turnover frequency (TOF).
5
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Figure 1.1. Simple schematic representation of active sites for [FeFe] and [FeNi] hydrogenase. 

1.2.0 Biomimetic Proton Reduction Catalysis 

The Verani group is interested to study the second step of the water splitting process, namely 

proton reduction, in more detail due to our interest in the hydrogen fuel formation reaction. 

Several research groups have tried to mimic the active site of [FeFe] and [NiFe] hydrogenase by 

using synthetic inorganic chemistry. Darensbourg,
6
 Rauchfuss,

7
 Sun,

8 
and Artero

9
 are the key 

players in the field of mimicking the hydrogenase active sites for proton reduction activity. In 

general, researchers have tried to synthesize the active site of the complex which contains either 

[FeFe] or [FeNi] centers bridged by thiolate units. The coligands are typically carbon monoxide 

or cyanide, which ensure a low-spin configuration of the metal ions, and therefore less lability in 

the active center formed primarily by soft systems. A proton source such as NH was often 

incorporated in the ligand framework to serve as a proton relay by this moiety. Multiple 

variations of these complexes were made by changing the coligands from cyanide to phosphine 

or the bridging unit from thiolate to dithilone.
6-9

 Various [FeFe], [FeNi], [Fe], and [Ni] 

complexes were synthesized and although several groups have succeeded in mimicking the 

active site of hydrogenase (Figure 1.2), the catalytic activities of the biomimetic complexes are 

considerably lower than those in the actual enzymes. Nonetheless, incorporation of such 
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biomimetic complexes into micelles or dendrimers improved the catalytic activity to a great 

extent. 

  

 

 

 

 

 

 

                                                                                                   

 

Figure 1.2. Biomimetic synthetic model complexes of [FeFe] and [NiFe] hydrogenases. 

 

1.3.0 Types of Proton and Water Reduction Catalysis 

In general, there can be four different categories for such catalysis.
10

 

A) Electrocatalytic proton reduction: Proton reduction in non-aqueous solvents with a 

catalyst by using an organic acid. A particular potential is applied electrochemically to 

generate the active species from the catalyst, which can start the catalytic cycle and 

eventually generate hydrogen.  

B) Photocatalytic proton reduction: Proton reduction in non-aqueous solvents with a 

catalyst in the presence of an organic acid and a photosensitizer under photocatalytic 

conditions. Here a particular wavelength of light excites the photosensitizer, which then 

transfers an excited state electron to the catalyst, thus generating the active species which 

will generate hydrogen from the organic acid. This photosensitizer can be present in 



www.manaraa.com

8 
 

 
 

solution as an independent complex or as a subunit in a heterometallic scaffold 

containing the catalyst and the photosensitizer. There are some advantages associated 

with strongly coupled heterometallic complexes that may favor catalytic activity, but the 

synthetic complexity of such systems continues to be an impediment. 

C) Electrocatalytic water reduction: In contrary to the process with organic acids in non-

aqueous solvents which is expensive, water is an affordable and abundant source of 

protons. In this category neutral water is reduced to generate hydrogen. A fixed potential 

is applied electrochemically to generate the active species from the catalyst, which will 

start the catalytic cycle and generate hydrogen. 

D) Photocatalytic water reduction: Water reduction in the presence of the catalyst and 

photosensitizer under photocatalytic conditions. Monochromatic light excites the 

photosensitizer, which will transfer an excited state electron to the catalyst, thus 

generating the active species, which will generate hydrogen from neutral water. The 

photosensitizer can be present in the same or as an independent molecule. 

 

1.4.0 Important parameters for proton/water reduction electrocatalysis 

There are a few important parameters
10

 relevant to proton and water reduction electrocatalysis. 

Those parameters are listed and discussed below. 

A) Overpotential (η): The excess potential required to generate hydrogen from an acid 

source in comparison with the thermodynamic potential for hydrogen generation, as 

shown in equation 3.  

η = Ep/2 – E
0

HA/H2                  (3) 

Ep/2: experimental potential for H2 generation; E
0

HA/H2: standard thermodynamic potential for H2 
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generation. A good catalyst should have a low overpotential for hydrogen generation. For water 

reduction, researchers generally use the “onset” overpotential (the potential from where the 

catalytic peak starts to increase) instead of regular overpotential due to the ill-behaved nature of 

the cyclic voltammogram. 

B) kobs: Experimental rate constant for hydrogen generation, as shown in equation 4.   

ic/ip = n/0.4463√ RTkobs/Fν      (4) 

ic: peak current in the presence of catalyst; ia: peak current in the absence of catalyst;                   

n: number of electrons transferred to generate one equivalent of hydrogen; R: universal gas 

constant; T: temperature; F: Faraday constant; ν: scan rate; high kobs indicates faster rate of 

hydrogen generation. 

C) Turnover number (TON): The number of moles of hydrogen generated per mole of 

catalyst used, as shown in equation 5.  

TON = nH2/ncat       (5) 

nH2: The number of moles of hydrogen after bulk electrolysis; ncat: The number of moles of 

catalysts used for bulk electrolysis. 

The TON assesses the overall stability of the complex. The higher the TON, the more stable the 

catalyst is. 

D) Faradaic efficiency (FE): The ratio between numbers of moles of hydrogen generated 

and half of the charge passed during the bulk-electrolysis experiment, as shown in 

equation 6.  

FE = [(nH2)/(Q/2)]     (6) 

nH2: The number of moles of hydrogen generated after bulk electrolysis; Q: The amount of 

charge passed during the bulk electrolysis experiment. 
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The Faradaic efficiency is a measure of how much of the total catalytic species is involved in 

actual catalysis with respect to other bimolecular pathways. A Faradaic efficiency of 100% 

indicates that the catalyst is only involved in one pathway of electron transfer reaction, namely to 

generate hydrogen. A good catalyst should present Faradaic efficiencies of 80-100 %. 

1.5.0 First-row Transition Metal Complexes for Proton and Water Reduction 

Molecular systems containing affordable Earth-abundant transition metals capable of electro-

catalytic proton reductions have attracted attention due to the potential improvement in catalytic 

performance through rational design. Theoretically, the generation of a two-electron reduced 

species from a metal-complex at a proper potential can generate an active species capable of 

reducing protons to dihydrogen while oxidizing back to the parent state. Platinum based catalysts 

are well-known to reduce protons to dihydrogen.
11

 However, the expensive nature of noble 

metals makes these complexes impractical for the hydrogen-based economy. Thus, there is an 

immediate urge to identify complexes of abundant metals for proton reduction. Complexes of 

iron, nickel, and cobalt are well-known in the literature to perform proton reduction catalysis.
10

 

Thus, several groups have tried to design complexes which are not necessarily a structural match 

with hydrogenase, but serve the functional role. In this regard, manganese,
12

 iron,
13

 nickel,
14

 

copper
15

 and cobalt
16-23

 complexes of various ligand frameworks were designed and tested 

towards proton and water reduction. Manganese complexes of vinylidene/allenylidene ligands
12

 

have shown proton reduction activity in the presence of HBF4 as the acid source in acetonitrile at 

a potential of -1.60 (vinylidene) and -0.84 VFc/Fc+ (allenylidene). (Figure 1.3a).
12a

 On the other 

hand, iron complexes of a fluorine-rich dimethyl glyoxime (dmgH) type ligand exhibited proton 

reduction in the presence of trifluoroacetic acid (TFA) at a low overpotential of 0.3 V with a 

TOF of 200 s
-1 

(Figure 1.3b).
13a

 Several Ni(II) complexes of phosphines,
14a-g

 oximes,
14h

 and 
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thiolanes,
14i 

(Figure 1.3c-e) are also well-known in this regard. Few Ni(II) phosphines,
 
and 

pyridine-rich complexes (Figure 1.3f-h),
14j

 are known to generate hydrogen from neutral water. 

Similarly, Sun et al.
15

 recently have shown water reduction at pH 2.5 by using copper complexes 

of such pyridine-rich ligands (Figure 1.3i) with an onset overpotential of 420 mV and TON of 

1.4 x 10
4
 mol of hydrogen. Many cobalt complexes capable of performing proton and water 

reduction are known in literature,
16-23

 and will be discussed in the following section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. (a) Mn, (b) Fe
II
, (c)-(h) Ni

II
, and (i) Cu

II
 complexes for proton and water reduction. L 

= CH3CN/H2O. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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1.5.1 Proton Reduction Catalysts based on Cobalt Complexes  

The cobalt ion has been used in several proton-reduction electrocatalysts because of its 

energetically viable conversion from 3d
6
 Co

III
 or 3d

7
 Co

II
 into the procatalytic nucleophile 3d

8
 

Co
I
 species.

16-23 
These electrocatalysts generally stabilize the lower oxidation state of the cobalt 

center either by direct metal reduction or by assistance from the ligand. The Co
I
-species for these 

complexes is extremely nucleophilic, and can attack a proton to generate a Co
III

-H species, which 

can subsequently react with another proton to generate dihydrogen. On the other hand, this Co
III

-

H species can undergo further reduction to generate a cobalt(II)-hydride (Co
II
-H) species which 

can then react with another proton to generate hydrogen. Among the most studied systems for 

cobalt, the Espenson catalyst,
16a

 a Co
III

 oxime species that stabilizes its monovalent Co
I
 

counterpart, is capable of proton reduction in acidic media. It has been widely studied by several 

groups.
16

 While a general consensus has not yet been reached for most Co catalysts,
16 

it is widely 

accepted that a Co
III

–H species must be generated from a series of reduction and protonation 

events in the catalytic cycle. Several ligands have been used to accommodate the cobalt ion 

towards proton reduction, which is described in the following sections.  

A) Cobalt Complexes in N4 Pseudo-macrocyclic Environments
 
 

The cobalt-dimethylglyoxime [Co(dmgH)2]
0
 complex was first introduced in 1960s by Costa et 

al. as the successful model for vitamin B12.
16b

 Later, Espenson et al. found this complex as the 

catalyst for proton reduction to generate hydrogen in 1986.
16a

 This series of complexes (Figure 

1.4-1.6) was investigated extensively in the 2000s by Artero, Peters, Mulfort & Tiede, Gray, 

Alberto, Eisenberg, Hammes-Schiffer, and Muckermann.
16c-u

 Due to the π-acceptor nature of the 

oxime ligand framework, the Co
I
 state was stabilized upon reduction, which can successively 

generate hydrogen from various acids. 
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Figure 1.4. (a)-(b) Monometallic (S = S' = H2O, CH3CN; R= Me, Ph).  

 

Artero et al.
16c-d

 have proposed various mechanistic pathways for hydrogen generation with these 

complexes (Figure 1.4a,b) in the presence of acid sources of different strengths. They also 

studied the kinetic, mechanistic, and catalytic aspects of these complexes with heteroaxially 

substituted axial ligands. A boron bridge was incorporated to protect these complexes against 

hydrolysis. Peters et al.
16e-f

 (Figure 1.4a,b) compared the catalytic activity upon changing the 

equatorial oxime substituents from methyl to phenyl. The methyl substituents have shown 

optimized activity towards proton reduction. They isolated and crystallized the Co
I 
complex, the 

active species for the catalysis, which is 5-coordinated in nature (Figure 1.4b). Eisenberg,
16i-l 

as 

well as Mulfort & Tiede
16m-n 

used heteroaxially substituted monometallic Co(dmgH)2 complexes 

towards photocatalytic proton reduction in the presence of organic or inorganic photosensitizers. 

All of these species can generate hydrogen using strong to mild organic acids at low 

overpotentials (0-0.5 V) with good turnover numbers (0-50).  Several groups have designed 

tetradentate oxime ligands instead of dimethylglyoxime due to the enhanced stability of the 

earlier species towards hydrolysis. Artero et al.
14h

 synthesized and characterized the dibromo 

analog of such cobalt complexes with a bridging propyl unit in the ligand framework (Figure 

1.5a,b). These complexes are more robust catalysts than their dimethylglyoxime analogs.
16o

 

(a) (b) 
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(a) (b) (c) (d) 

They studied the mechanism of proton reduction with this series of complexes and proposed that 

the formation of a Co
III

-H intermediate from the reaction between an active Co
I
 species with the 

proton. Moreover, they invoked an oxime-bridged pathway in the generation of hydrogen. 

Alberto et al.
16p-q

 proceeded one step further and designed a similar ligand with varying 

substituents on the propyl bridge (Figure 1.5c), which reveals better TON (TONCo: 8/12 h) for 

the unsubstituted one, whereas the electron-withdrawing fluoro-substituted one shows the lowest 

TON (TONCo: 2/12 h) in the presence of rhenium containing photosensitizers, TEOA as the 

sacrificial donor, and HBF4 as the acid source in aqueous solution. Furthermore, they designed a 

pentadentate ligand (Figure 1.5d) with a similar oxime framework containing a pendant pyridine 

arm generated from the propyl bridge. They used this cobalt complex (Figure 1.5d) as the 

catalysts for proton reduction in the similar photocatalytic conditions as described before for the 

complexes in Figure 1.5c. This complex (in Figure 1.5d) exhibited superior catalytic activity 

with TONCo reaches to 10 after 12 h of experiment. 

 

 

 

 

 

Figure 1.5. Cobalt complexes based on tetradentate oxime ligands (R1, R2: CH2OH; R1, R2: F; 

R1: H, R2: OH). 

       Peters et al.
16f

 developed cobalt complexes of a tetraaza macrocycle containing four imine 

moieties connected by two bridging propyl units. The imine units are connected with various 

alkyl substituents. The alkyl substituents were systematically altered to include a variety of 
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methyl and phenyl substituents as shown in Figure 1.6a. The methyl substituted complexes were 

able to generate hydrogen in non-aqueous media from both strong and medium strength acids 

such as p-toluene sulfonic acid (TsOH) and tetrafluoroboric acid (HBF4), respectively. On the 

contrary, the phenyl substituted complexes could not catalyze proton reduction with these acid 

sources. Peters et al. also altered the axial ligands from neutral acetonitrile to negatively charged 

bromides. Additionally, Alberto et al.
16q

 (Figure 1.6b) have explored the photocatalytic activity 

of similar complexes with substituents on the propyl bridge in the presence of rhenium 

containing photosensitizers with a TON of ca. 17. 

 

 

 

 

 

Figure 1.6. Cobalt complexes based on tetraimine macrocycles (S = Br, CH3CN; R= R' = Me; R 

= R' = Ph; R = Me, R' =Ph. R1 = OH, R2: CH3). 

 

B) Cobalt Complexes of Pyridine-rich Ligands 

Several groups have designed and synthesized pyridine-containing multidentate ligands which 

can accommodate cobalt and generate cobalt(II) complexes (Figure 1.7). Chang et al.
17a

 have 

synthesized such complexes using a tetradentate ligand (Figure 1.7a), capable of generating 

hydrogen from trifluoroacetic acid at a low overpotential of 0.4 – 0.6 V in acetonitrile or in an 

acetonitrile/water (1:1) mixture with TOF of 40. Furthermore, pentadentate redox-active 

pyridino-bis-bipyridine ligands have been designed and the corresponding cobalt complexes 

were synthesized (Figure 1.7b).
17b

 These complexes exhibited electrocatalytic proton reduction 

at a low overpotential of 0.55 V in presence of a very weak acids such as acetic acid. Ligand-

(a) (b) 



www.manaraa.com

16 
 

 
 

centered redox activity was found to be responsible to reduce the overpotential with respect to its 

non-redox counterparts. The incorporation of the electron-withdrawing CF3 substituent on the 

para position of the pyridine ring (Figure 1.7c) reduces the catalytic activity due to excessive 

stabilization of the reactive Co
I
-species. 

 

 

Figure 1.7. Cobalt complexes based on pyridine-rich ligands. 

C) Cobalt Complexes of N4 Aniline-salen Ligands
 
 

Gastel et al.
18

 have synthesized a novel Co
II
 complex based on an aniline-salen type of ligand 

(Figure 1.8). 

 

 

 

 

 

 

Figure 1.8. Cobalt complex based on aniline-salen ligand. This complex undergoes protonation 

in the presence of a proton source to generate an anilinium complex which generates hydrogen. 

 

This complex can undergo protonation in presence of two equivalents of acid, p-cyano anilinium 

(a) (b) (c) 
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tetrafluoroborate. This protonated complex can induce a 1.0 V positive shift in the Co
II
/Co

I
 

electrochemical potential, thus acting as a proton reduction catalyst which generates hydrogen at 

an overpotential of 0.9 V with a TON of 30 after 3.7 hours of electrolysis in CH3CN at -1.9 

VFc/Fc+. Furthermore, this aniline group acts as a proton relay to the active site. 

D) Homobimellic Cobalt Complexes in Nitrogen-rich Environments  

Several groups have designed bimetallic cobalt complexes based on nitrogen-rich ligands where 

the metal centers stay in close proximity (Figure 1.9).
19

 

 

Figure 1.9. Homobimetallic cobalt complexes with nitrogen-rich ligands for proton reduction. L 

= CH3CN; S= Cl; S' = Py. 

(a) (b) 

(c) (d) 
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Peters et al.
19a

 synthesized a bimetallic [Co
II
Co

II
] complex based on pyridazine as the bridging 

unit where the other donating units are oxime-based (Figure 1.9a). This complex exhibited 

unique redox properties by stabilizing five different oxidation states, namely [Co
III

Co
III

], 

[Co
III

Co
II
], [Co

II
Co

II
], [Co

II
Co

I
], and [Co

I
Co

I
]. Proton reduction catalysis was observed at a low 

overpotential with this complex (Figure 1.9a) in the presence of 2,6-dichloroanilinium 

tetrafluoroborate as the acid source. Fukuzami and coworkers
19b

 synthesized a bimetallic 

[Co
III

Co
III

] complex based on pyrazolate as the bridging moiety, where the other coordination 

sites of the metal were occupied by terpyridine units (Figure 1.9b). This parent complex can 

undergo three or four electron reductions by Co(Cp)2 or Co(Cp
*
)2 to generate Co

I
Co

II
 or Co

I
Co

I 

species, respectively. Either of these species can act as the active species and react in the 

presence of an acid such as TFA to generate the corresponding hydride species, which 

subsequently generates hydrogen at an overpotential of 0.6 V. A heterolytic pathway was 

invoked to explain the mechanism of hydrogen generation. Gray et al.
19c

 have shown catalysis 

with a bimetallic Co(dmgBF2)2 type complex bridged with an eight-carbon (8C) long chain 

(Figure 1.9c). This complex exhibited no improvement of catalysis in comparison with its 

monometallic analog, suggesting that catalysis is occuring in a heterolytic manner. The same 

group
19d 

also synthesized a homobimetallic cobalt complex linked through a boron bridge 

(Figure 1.9d). Surprisingly, this complex generates hydrogen at a higher overpotential (0.954 V) 

in the presence of ([DMFH]
+
) and DMF (1:1) in comparison with its monomeric analog. 

E) Cobalt Complexes with Oxygen Donor Ligands 

A considerably smaller number of research groups is involved with proton reduction catalysis 

with cobalt complexes using oxygen as the donor moiety. This is due to the expected higher 

negative potentials associated with the redox processes (Figure 1.10).
20

 Tilley et al. synthesized 
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(a) (b) (d) 

and characterized two trimetallic complexes of [Co
III

Co
II
Co

III
] type supported by a acylalkoxy 

ligand framework (Figure 1.10a,b).
20a

 These complexes exhibited proton reduction in 

acetonitrile in the presence of TsOH at very low overpotential (<200 mV) with a good TOF of 80 

s
-1

.  

 

 

 

 

 

Figure 1.10. Cobalt complexes in oxygen-rich environment for proton reduction. 

On the other hand, Dinolfo and coworkers synthesized [Co
II
Co

II
] complexes based on a modified 

Robson-type [N6O2] macrocycle (Figure 1.10c,d).
20b

 These complexes displayed proton 

reduction activity in the presence of a mild acid TFA, and a weak acid HOAc in acetonitrile. In 

the presence of TFA, this complex generates hydrogen at an overpotential of 0.7 V. The rate 

constant of proton reduction in the presence of TFA was calculated to be 138 M
-2

s
-1

 (Figure 

1.10c), whereas the acetate coordination (Figure 1.10d) lowers the rate constant to 63 M
-2

s
-1

. 

Moreover, this complex shows electrocatalytic overpotential of 0.6 V in the presence of HOAc 

with a Faradaic efficiency of 72-94% at -1.88 VFc/Fc+. Generally, these complexes generate 

[Co
I
Co

I
] species upon double reduction, which can act as the active species. The catalytic 

mechanism can either involve heterolytic reaction between a proton with one of the Co
III

-H 

species or homolytic combination and cleavage of two Co
III

-H species. The presence of stable 

macrocyclic environments support the stability of the lower oxidation states of the metal centers. 

(c) 



www.manaraa.com

20 
 

 
 

(a) (b) (c) 

(d) (e) 

These imino-phenolate-based bimetallic cobalt complexes are one of the first examples of 

phenolate-based ligand framework towards proton reduction. 

F) Cobalt Complexes of Dithiolane Ligands 

Eisenberg and coworkers
21a

 synthesized several cobalt dithiolane complexes (Figure 1.11a-d) 

and studied them for proton reduction. Dithiolane is a potential redox-active ligand and thus, 

important in understanding the role of ligand-catalysed proton reduction.
21b

 They prepared 

several complexes by either incorporating slightly electron-donating methyl substituents, mild 

electron-withdrawing chloro, or strongly withdrawing cyano groups (Figure 1.11a-d). All of 

these complexes exhibited electrocatalytic and photocatalytic proton reduction either in CH3CN 

or CH3CN/H2O (1:1) mixture. 

 

 

 

 

 

 

Figure 1.11. Cobalt complexes based on dithiolane ligands (X = F, Cl, I, OMe). 

Electrocatalysis was performed with TFA as the acid source. Additionally, photocatalysis was 

executed with Ru(bpy)3
2+

 as the photosensitizer and ascorbic acid as the sacrificial electron 

donor at 520 nm irradiation. The complex containing strongly withdrawing cyano groups 

displayed superior activity during photocatalysis with a turnover number reaching 9,000. Tilley 



www.manaraa.com

21 
 

 
 

and coworkers
21c

 varied the aryl substituents on a similar dithiolane ligand (Figure 1.11e) and 

showed a considerable effect of aryl substituents on the catalytic current during electrocatalysis. 

They used anilinium tetrafluoroborate as the acid source with an overpotential ranging from 0.35 

– 0.5 V for different complexes. Furthermore, they proposed the possibility of a bridged 

protonation pathway through dithiolane from the doubly reduced species. 

G) Cobalt Complexes based on Phosphine-rich Ligands 

Gray and coworkers
22a

 recently synthesized a Co
I
 complex based on the tripodal phosphine-rich 

ligand (Figure 1.12a) which stabilizes a Co
III

-H species to a significant extent, thus isolable 

under regular conditions. This complex generates hydrogen from a mild acid source such as 

TsOH at an overpotential of 1 V. The isolation and 
1
H-NMR spectroscopic characterization of 

the Co
III

-H species enabled them to study the kinetics of the catalytic process in great detail. 

Homolytic combination of two Co
III

-H species or heterolytic reactions of Co
II
-H with a proton 

are the two most likely pathways to be operative in the generation of hydrogen under these 

conditions.  

 

 

 

 

 

 

Figure 1.12. Cobalt complexes based on phosphine-rich ligands.  

Bullock et al.
22b-c

 synthesized two new tetradentate phosphine-rich ligands containing two 

pendant amine moieties. Cobalt complexes of such ligands (Figure 1.12b,c) allow isolating two 

(a) (b) (c) 
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very important active intermediates, namely Co
I 

and Co
III

-H species, which in turn helps to 

understand the catalytic mechanisms. Electrocatalytic proton reduction was exhibited by these 

complexes in the presence of [(DMF)H]
+
:DMF with a TOF of 980 s

-1
, and an overpotential 

ranging between 0.9 – 1.2 V. They were able to analyze various cobalt hydride species and 

concluded that the Co
I
-H species can be a potentially active intermediate during catalysis in 

addition to the Co
III

-H and Co
II
-H species. Furthermore, the pendant amine of these complexes 

facilitates the transfer of protons to the active site. 

H)  [RuCo] Heterobimetallic Complexes for Photocatalytic Proton Reduction 

Several groups have designed supramolecular [RuCo] systems to study electron transfer and 

photocatalytic hydrogen production instead of using monometallic cobalt complexes for 

electrocatalytic or photocatalytic (in the presence of an external photosensitizer) proton 

reduction. Artero et al.
23a,b

 designed such systems where the photosensitizer is attached to the 

active site through a pyridine donor in the axial position (Figure 1.13a,b). They studied 

photocatalysis in the presence of triethyl ammonium tetrafluoroborate (Et3NHBF4) as the acid 

source, triethyl amine (Et3N) as the electron donor, and a cadmium iodide-doped mercury lamp 

as the light source. The boron-capped bridge shifted the Co
II
/Co

I
 electrochemical potential to a 

less negative value, whereas this supramolecular system facilitates the electron transfer and thus 

proton reduction capability, which is 1.5 to 8.5 times better than the corresponding 

multicomponent systems. The TONs range from 10-60 after 4 h of operation for various 

complexes. Sun and coworkers
23c

 took a step further and compared the photocatalytic activity 

between a fully conjugated bridge (Figure 1.13c) versus a non-conjugated bridge (Figure 1.13d) 

in the presence of Et3NHBF4 as the acid source and Et3N as the electron donor. The complex 

containing the unconjugated bridge showed better activity (TON: 48 after 8 h) than the 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

conjugated one (TON: 38 after 8 h), suggesting possible prevention of back electron transfer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13. [RuCo] complexes; S = H2O, X = O, R = Me/Ph; X = NH, R = Me. 

Mulfort & Tiede
23d

 investigated several supramolecular [RuCo] assemblies shown in Figure 

1.13e,f in detail, focusing on the axial coordination and an electron transfer. X-ray scattering 

studies revealed an equilibrium between the associated [RuCo] assembly and the dissociated 

[Ru] and [Co] fragments. On the other hand, transient absorption measurements showed a very 
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complex kinetic profile with the combination of very fast quenching of the excited state and also 

a long-lived decay of the exited state. Both these techniques unequivocally suggested the 

possibility of axial ligand dissociation, thus limiting the electron transfer process from the 

photosensitizer to the catalytic site. Furthermore, these axially bound systems can promote very 

fast back electron transfer which can quench the catalytically active species. Therefore, Tiede, 

Chen & Mulfort explored a new synthetic design
23e

 by using an equatorial attachment to 

assemble the photosensitizer and the catalytic site. Two such complexes based on [RuCoRu] 

cores (Figure 1.13g,h) were synthesized
23e 

and thoroughly characterized. The complex shown in 

Figure 1.13g exhibited a charge separated state upon irradiation, as observed from the formation 

of a high spin Co
I
 state. The complex shown in Figure 1.13h did not show any charge separated 

state. Although limited by the very short-lived charge separated state and multiple ligand state, 

these equatorial designs are a big step towards photocatalytic hydrogen production. 

1.5.2. Water Reduction Catalysts based on Cobalt Complexes 

As far as the concern regarding sustainable energy source goes, it is always ecofriendly, greener, 

and cheaper to generate hydrogen from neutral water rather than expensive organic acids. Most 

of the complexes are known to catalyze proton reduction in non-aqueous media due to the lack of 

solubility, stability, and activity in neutral water. Therefore, several ligand systems were recently 

designed aiming at water soluble complexes.
24,25 

1.5.2.1. Cobalt Complexes of Pyridine-rich Ligands  

Several pyridine-rich multidentate ligands were designed to generate water soluble Co(II)/Co(III) 

complexes, which are capable of generating hydrogen from neutral water (Figure 1.14). Thus, in 

the last few years several groups have synthesized cobalt complexes based on tetradentate imino-

pyridine,
24a 

(Figure 1.14a) and diimino-pyridine
24b

 (Figure 1.14b) ligand frameworks. On the 
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other hand, cobalt complexes of several tetradentate ligands based on pyridine, bipyridine, 

phenanthroline, and carbene
 
moieties were also synthesized

17a,24c-h
 (Figure 1.14c-h). Moreover, 

several complexes based on pentadentate ligands (Figure 1.14i-n) were also produced for this 

purpose. Among those, cobalt complexes of pentapyridine,
17b,24i,j 

monoamino-tetrapyridine,
24k,l 

diamino-tripyridine,
24m 

and triamine-bispyridine
24n 

complexes are well established. Several of 

these complexes exhibited electrocatalytic water reduction activity at a low overpotential (0.4 – 

1.0 V) with TONs in the thousands. Several of these complexes (Figure 1.14b-g,i-l,n) were also 

investigated in photocatalysis, and they displayed excellent photocatalytic activity in the 

presence of various photosensitizers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14. Cobalt complexes of several pyridine-rich ligands. R = OH, X = Y = Br; R = OMe, 

X = Y= CH3CN; A/Z = H, CF3, NMe2, B = H2O; L = Cl
-
, NO3

-
, OTf

-
, H2O; D = CH3CN, H2O. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) 

(l) (m) (n) 
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1.5.2.2. Cobalt Complexes based on Phosphine-rich Ligands 

To reduce the onset overpotential of hydrogen generation, Sun et al. have designed a novel 

phosphine-rich tetradentate ligand environment that can accommodate a cobalt(II) ion.
25

 The 

Co(II) complex contains two water molecules in the 5
th

 and 6
th

 positions (Figure 1.15). This 

complex exhibited excellent electrocatalytic activity in the presence of neutral water at a very 

low overpotential of 0.08 V. In addition, it did not decompose over a 20-hour period and 

generated 1,490 moles of hydrogen per hour with respect to one mole of the catalyst. 

 

 

 

 

 

Figure 1.15. Cobalt complex of phosphine-rich ligand. 

1.6.0. Generalized Catalytic Mechanisms for Proton Reduction with Cobalt Complexes  

In general terms, independent of the nature of the parent species (be it Co
III

 or Co
II
), it is 

important for a particular ligand framework to stabilize the Co
I
 state. This state is capable of 

reducing protons to hydrogen. Usually, a π-acceptor or a soft-donor ligand environment can 

favor this lower oxidation state upon reduction.
16-25

 This Co
I
 is an extremely good nucleophile to 

attack an electrophile such as the proton and generate the Co
III

-H species, which is an active 

intermediate in proton reduction catalysis. In presence of a strong acid source, this Co
III

-H 

intermediate can either react with a proton to generate hydrogen in a heterolytic fashion or it can 

combine with another Co
III

-H species to generate hydrogen in a homolytic manner. Depending 
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on the acid strength (mainly for mild/weak acids), the Co
III

-H intermediate can undergo 

reduction, either directly from the electrochemical potential available in the system or by 

electron transfer from the residual Co
I
 species present in solution, to generate the Co

II
-H species. 

This Co
II
-H species can either react with another proton to generate hydrogen heterolytically or it 

can combine with another Co
II
-H species homolytically to generate hydrogen (Figure 1.16).

10b
 

Figure 1.16. Generalized mechanistic scheme for proton reduction. 

1.6.0 Summary and Outlook 

An extensive body of literature was generated in the last decade regarding proton and water 

reduction catalysis due to the immediate need to find effective and sustainable alternative energy 

sources. The inexpensive nature of first-row transition metals has driven the new, yet already 

extensive, research direction towards Earth-abundant metal catalyzed hydrogen production. 

Cobalt complexes seem to be the most promising among those studied because of the 

stabilization of highly nucleophilic Co
I 

species. In spite of the existence of several cobalt-

containing proton reduction electro- and photocatalysts reported in the literature (over one 

hundred), there are only very few known (only one third of them ~ 30) to perform efficient water 
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reduction. Therefore, a systematic variation of the ligand framework is required to optimize and 

understand the electronic, spectroscopic, and mechanistic aspects towards proton and water 

reduction catalysis.  

1.8.0 Research Statements and Objectives 

It is necessary to understand the electronic processes governing water oxidation and proton 

reduction to achieve effective electro or photocatalytic water splitting. I am mostly interested in 

studying the behavior of the catalytic site (Co
III

/Co
II
) for proton reduction. Proton reduction 

involves two-electron transfers to generate one equivalent of dihydrogen. Theoretically, the 

generation of a two-electron reduced species from a metal-complex at a proper potential, can act 

as an active species capable of reducing protons to dihydrogen while oxidizing back to the parent 

species. The doubly reduced species can be generated via a two-electron metal-based reduction 

or via a combination of metal and ligand-based reductions. Thus, the Verani group uses ligand 

design containing redox-active frameworks for the formation of metal complexes for proton 

reduction. Cobalt has been extensively used to catalyze proton or water reduction to generate 

dihydrogen because it can stabilize highly nucleophilic reduced species such as Co
I
. Therefore, 

the focus of this thesis is to generate Co
II
/Co

III
 complexes of polydentate ligands for the 

generation of proton reduction catalysts. To perform the catalysis efficiently, the reduced active 

species must be basic enough to deprotonate the acid and react with the proton, but excessive 

basicity is undesirable because it overstabilizes the metal hydride intermediate, thus inhibiting 

hydrogen formation. Optimization of proton reduction capability can only be systematically 

achieved by altering the design of the ligand framework around the metal center. Therefore, we 

have investigated the electronic, redox, electron transfer, and catalytic properties of cobalt 

complexes in various ligand frameworks: imino-phenolates, imino-oximes, and imino-pyridines 
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(Figure 1.17). Due to our previous experience of synthesizing polydentate ligand frameworks
26a-

e 
and its corresponding cobalt complexes

26f
 in the Verani lab, we were very confident in 

designing various ligand scaffolds. 

 

                                 

Figure 1.17. The ligand frameworks employed to accommodate cobalt towards proton/water 

reduction. 

Furthermore, we can probe the role of substituents around this ligand framework or alter the 

axial ligands and the axial ligand substituents to modulate the electronic and redox properties, 

thus affecting the overall nucleophilic character of the reduced cobalt species which will have a 

direct influence on catalysis. Therefore, in this thesis I will discuss cobalt complexes of redox-

active ligands and their activity towards proton reduction, as well as our progress towards 

designing various ligand frameworks capable of reducing the overpotential for hydrogen 

generation. 

      Moreover, in this thesis I describe the synthetic efforts towards designing photocatalytic 

assemblies containing the heterobimetallic [Ru
II
Co

III
] core, where Ru

II
 is the photosensitizer and 

Co
III

 is the catalytic site. These species were obtained using selected catalytic modules, namely 

cobalt oxime with a Ru(bpy)2
2+

 photosensitizer via equatorial attachment. 

     Additionally, we synthesized cobalt complexes that are water soluble, and therefore that can 

be tested towards their water reduction capability. Hydrogen generation from neutral water is 

always beneficial and more affordable than the expensive organic acids. Therefore, we 
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incorporated several polar imine moieties in our ligand design to make the corresponding 

complex water soluble. 

I. Goals and Objectives 

The overall objective of this thesis project is to understand the synthetic, geometric, redox, 

electronic, catalytic, and mechanistic aspects of cobalt complexes in various redox-active ligand 

frameworks and use this information to attain efficient proton and water reduction. In order to 

obtain this overarching objective, the following goals have been pursued. 

 Goal # 1: Evaluation of Substitution and H-bond-induced Modulation of the 

Electronic and Catalytic Properties of Octahedral Co
III

-complexes in Phenolate-rich 

Environments towards Proton Reduction. We aim to modulate the redox, electronic and 

catalytic properties for Co
III

-complexes of phenolate-rich ligands by changing the 

substituents either in the ligand or on the metal. This goal is addressed in Chapter 3. 

 Goal # 2: Investigation of the Electrochemical and Catalytic Pathways of Co
III

-oxime 

Complexes with Homoaxial and Heteroaxial Ligands towards Proton Reduction. We 

address the electrochemical and catalytic pathways for Co
III

-oxime complexes with 

various axial ligands for proton reduction in organic solvent and we also investigate the 

synthetic, electronic, and catalytic implications of a selected [Ru
II
Co

III
] complex. This 

goal is addressed in Chapter 4. 

 Goal # 3: Study of Proton and Water Reduction Catalysis by a Co
III

-complex of 

Pentadentate Oxime Ligand. Based on the observations for Goal 2 that 5-coordinated 

species are the active species for the catalysis, we investigate cobalt complex formation 

with a pentadentate oxime ligand and its activity towards proton and water reduction. 



www.manaraa.com

31 
 

 
 

This goal is addressed in chapter 5. 

Goal # 4: Study of Synthetic, Mechanistic, Geometric, Electronic, and Catalytic 

Properties of Phenylene-bridged Pyridine-rich Co
II

/Co
III

-complexes towards Proton 

and Water Reduction. We aim to examine the reactivity of cobalt complex formation 

with this series of ligands and the nature of electrochemical and mechanistic pathways for 

proton and water reduction in organic and aqueous solvents. This goal is addressed in 

chapter 6. 

These topics were developed over the course of the last 6 years and constitute the body of this 

dissertation. The results follow. 
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CHAPTER 2 

MATERIALS, METHODS, AND INSTRUMENTATION 

 

2.1. Materials 

In this research program, several ligands and their corresponding complexes were synthesized. 

All the precursors including organic molecules and metal salts for this synthesis were purchased 

from Sigma-Aldrich, Acros Organics, and Alfa Aeser. Solvents were purchased from suitable 

commercial sources. Dry solvents were used for reactions when necessary. 

2.2. Methods and Instrumentations 

All the organic products were characterized by multiple physicochemical techniques such as 

fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy 

(
1
H-NMR), and electrospray ionization mass-spectrometry (ESI-MS). Identification of functional 

groups was achieved from FTIR spectra, whereas 
1
H-NMR spectra established the presence of 

various protons in different environments. Additionally, ESI-MS confirmed the presence of 

molecular ion peaks in solution. Furthermore, to characterize metal complexes, FTIR 

spectroscopy was used to determine the functional groups and the counterions, when present. For 

this research, we employed mainly Co(III) complexes with a few exceptions using Co(II) 

complexes. As Co(III) complexes are 3d
6
 low-spin, we were able to get sharp and well defined 

1
H-NMR spectra for these species. EPR spectroscopy equipment was employed to understand 

the spin-state of the Co(II) complexes. In a few instances, we synthesized Ru(II)-based 

complexes which can again be characterized with 
1
H-NMR due to its 4d

6
 low-spin diamagnetic 

nature. ESI-MS spectroscopy equipment was used to confirm the presence of the molecular ion 

peak in solution and C, H, N elemental analysis equipment were performed to confirm the 
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identity of the complex. X-ray diffraction techniques were used to solve the structural identities 

of the complexes when possible. After performing all the techniques to confirm the complex is 

indeed present in the system, we employed several spectroscopic and electrochemical methods to 

understand the electronic nature of the complexes. UV-visible spectroscopy revealed the viable 

electronic transitions in the system, whereas the cyclic voltammograms showed the presence of 

various redox species in solution upon oxidation or reduction. Spectroelectrochemistry or bulk-

electrolysis techniques were used to gain information about the oxidized or reduced redox 

species. Finally, gas chromatography was used to determine the amount of hydrogen generated 

during bulk-electrolysis measurements. 

2.2.1. Fourier transform infrared spectroscopy (FTIR) 

Infrared spectroscopy is an important technique due to its ability to identify various functional 

groups present in the system. The spectrum is typically obtained between % transmittance versus 

wavelength. Thus the presense of C=O, C=N, C=C, and other moieties were often confirmed by 

FTIR spectra. Each functional group has different vibrational frequency, thus appeared at 

different regions of the FTIR spectrum. Furthermore, it can also tell whether or not a particular 

functional group is present in the metal complex. For example, very often the presence of 

perchlorate (ClO4
-
), and hexafluorophosphate (PF6

-
) counterions were obtained from FTIR 

spectra. Infrared spectra were recorded from 4000 to 650 cm
-1

 as KBr pellets on a Bruker Tensor 

27 FTIR spectrophotometer in the lab. 

2.2.2. Nuclear magnetic resonance spectroscopy (NMR) 

1
H-NMR spectroscopy was employed to identify protons in various environments. The spectrum 

is typically obtained between intensity versus chemical shift. 
1
H-NMR characterization is 

essential for organic molecules. For Co(III) and Ru(II) complexes, this technique has been 
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extensively used due to the diamagnetic nature of the complexes. This technique mainly provides 

three important parameters such as, i) chemical shift (from the ppm value), ii) proton counts 

(from the intensity), and iii) splitting pattern (from the nature of the peak). This information 

allows us to deconvulate the identity of the molecules. Typically, the 
1
H-NMR spectroscopy was 

carried out in a Mercury FT-NMR 400 MHz setup using deuterated solvents such as CDCl3, 

CD3CN, and d
6
-DMSO at 25 °C. 

2.2.3. Electrospray Ionization Mass spectrometry (ESI-MS) 

ESI Mass spectrometry is one of the strongest techniques due to its ability to identify the 

molecular ion peak in the solution, thus it can tell about the identity of the compound. The 

spectrum is typically obtained as relative abundance versus m/z (mass versus charge). Typical 

ESI/APCI mass spectra show m/z peaks which are usually associated with the unfragmented 

molecule due to the soft nature of the technique. Generally, compounds are dissolved in organic 

solvents such as methanol or acetonitrile before the experiment. During the experiment, these 

molecules are fragmented with high energetic electrons and generate charged species. Typically, 

positive mode was used extensively to identify the ligands and the complexes. Low-resolution 

mass spectrometry is typically used for organic compounds, whereas for metal complexes high-

resolution techniques seems to be more useful (due to multi-charge nature). We typically obtain 

a cluster of peaks together due to the relative abundance of various components in the molecule. 

ESI-(+) mass spectrometry was measured in a triple quadrupole Micromass Quattro LC 

equipment where experimental mass patterns were fitted with theoretical isotopic distribution. 

These experiments were executed with the by Dr. Lew Hryhorczuk and Dr. Yuri Danylyuk form 

the central instrumental facility of department of chemistry, Wayne State University. 
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2.2.4. Electron paramagnetic resonance spectroscopy (EPR) 

EPR spectroscopy was used to determine the number of unpaired electrons, spin-state, and 

coordination around the metal. Diamagnetic compounds such as Co(III) and Ru(II) containing 

complexes (low spin: diamagnetic) can be characterized from 
1
H-NMR spectra, whereas EPR 

spectra is essential to determine the spin-state (high spin versus low spin) of paramagnetic Co(II) 

containing complexes. Samples were prepared under a nitrogen atmosphere. A 10
-3

 M solution of 

the complex was filled in suprasil quartz capillaries with 4 mm outer diameter and frozen in 

liquid nitrogen. Continuous wave (cw) X-band (9-10 GHz) EPR experiments were carried out 

with a Bruker ELEXSYS E580 EPR spectrometer (Bruker Biospin, Rheinstetten, Germany), 

equipped with a Bruker ER 4102ST resonator or a Bruker ER 4122SHQ resonator. The 

temperature was controlled using a helium gas-flow cryostat (ICE Oxford, UK) and an ITC 

(Oxford Instruments, UK). Data processing was done using Xepr (Bruker BioSpin, Rheinstetten) 

and Matlab 7.11.2 (The MathWorks, Inc., Natick) environment, and simulations were performed 

using the EasySpin software package (version 4.5.5).
1 

These experiments were executed with the 

collaboration with Dr. Oleg Poluektov from Argon National Laboratory (ANL), and the 

experiments were performed by Dr. Jens Niklas from ANL. 

2.2.5. Elemental analyses 

In this technique, carbon (C), hydrogen (H), and nitrogen (N) percentages were determined by 

combustion method. The corresponding oxides such as carbon dioxide (CO2), water (H2O), and 

nitrous oxide (N2O) were generated and the amounts of carbon, oxygen, and nitrogen were 

calculated from the amount of the oxides. These elemental analyses (C, H, and N) were 

performed using Exeter analytical CHN analyzer by Midwest Microlab: Indianapolis, Indiana.   
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2.2.6. X-ray Crystallography 

X-ray crystallography is the most important technique which can unambiguously confirm the 

structural identities of complexes. X-ray quality crystals were typically obtained by slow 

evaporation, vapor diffusion, and solvent layering techniques. Diffraction data was usually 

measured on a Bruker X8 APEX-II kappa geometry diffractometer with Mo radiation and a 

graphite monochromator. Various programs and software such as APEX-II, SHELX, COSMO 

APEX II, SAINT, and SADABS were used to solve and refine the structures.
2
 Dr. Mary J. Heeg, 

Dr. Phil Martin, Habib Baydoun, Kenneth K. Kpogo from the Department of Chemistry, Wayne 

State University and Dr. Richard Staples from the Department of Chemistry, Michigan State 

University solved the crystal structures. 

2.2.7. Ultraviolet-visible Spectroscopy (UV-vis) 

UV-visible spectroscopy reveals the electronic absorptions associated with the complexes. 

Multiple electronic transitions are operative in a complex, some of which are Laporte and/or spin 

allowed or forbidden. The probability of these transitions very much depends on the selection 

rules. The intensity/probability of a transition is designated by molar absorption coefficient (ε), 

which has been defined from Beer-Lambert law as, A = ε x C x l, where A is the absorbance, C 

is the concentration of the complex, and l is the length of the cell. A metal complex typically 

exhibits different kind of electronic transitions such as ligand based (LLCT), metal to ligand 

charge transfer (MLCT), ligand to metal charge transfer (LMCT), and d-d transitions. Ligand-

based transitions are typically very intense (ε ~ 20000 - 60000); whereas the charges transfer 

bands appears as medium intense band (ε ~ 5000 - 20000). On the other hand, the d-d transition 

typically shows very low intense bands (ε ~ 50 - 1000). UV–visible spectra were typically 

obtained at room temperature using a Varian Cary 50 spectrophotometer operating in the range 
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of 200 to 1000 nm with quartz cells. Values of ε are given in M
-1

 cm
-1

. The origin of these 

electronic spectra typically provides valuable information regarding the frontier orbitals of the 

complexes. All the spectra are recorded in dichloromethane, acetonitrile, or dimethyl formamide. 

2.2.8. Cyclic Voltammetry 

Cyclic voltammetry is one of the major characterization techniques in this context. It tells about 

the various redox species present in the solution. The electrochemical behavior of the complexes 

was investigated with a BAS 50W potentiostat/galvanostat. Cyclic voltammograms were 

obtained at room temperature in acetonitrile, dichloromethane or N,N’-dimethylformamide 

solutions containing 0.1 M of n-Bu4NPF6 or n-Bu4NBF4 as supporting electrolyte under argon 

atmosphere. The electrochemical cell employed was comprised of three electrodes: glassy-

carbon (working), platinum wire (auxiliary) and Ag/AgCl (reference). The ferrocene/ 

ferrocenium redox couple Fc/Fc
+
 (E

o 
= 400 mV vs NHE)

3
 was used as the internal standard. 

Usually, E1/2 (Ep,c + Ep,a)/2 was reported for reversible processes, whereas Ep,c and Ep,a are the 

typical parameters to designate irreversible process. Peak to peak potential separations (ΔEp = 

|Ep,c – Ep,a|) and |ipa / ipc| values were measured to evaluate the reversibility of the redox 

processes. The redox events were normally associated with the frontier orbitals of the complexes. 

2.2.9. Spectroelectrochemistry 

Spectroelectrochemical measurement coupled with UV-Visible spectroscopy often reveals the 

electronic nature of oxidized or reduced species. Spectroelectrostatic measurements were carried 

out in a optically transparent thin-layer cell (ca. 0.1 mm) constructed according to a procedure 

described as follows: a flat platinum wire in a “u” shape was sandwiched between two glass 

slides where the inner parts were coated with indium-tin oxide (ITO) (8-12 Ω/sq). The flat wire 

acted as the working electrode and extended outside of the slides for electrical contact. The 
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solutions were prepared and degassed under an inert atmosphere (argon) and introduced into the 

cell through a capillary action. The working electrode was located within 4-6 mm of the cell 

bottom to minimize ohmic potential (iR) drop. All potentials were measured vs. a Ag/AgCl 

reference electrode and a second platinum wire (counter). Potentials were applied to the cell by a 

BAS 50W potentiostat/galvanostat, and the spectra were collected with a Varian Cary 50 

apparatus at the room temperature within a typical time interval of 30 s until the equilibrium 

between oxidized/reduced species was achieved. 

2.2.10. Bulk Electrolysis 

Bulk electrolysis measurement coupled with UV-visible and EPR spectroscopy often reveals the 

electronic nature of oxidized or reduced species. Bulk electrolysis experiment have been 

performed in a custom-made air-tight H-type cell in the presence of vitreous carbon as the 

working electrode, Ag/AgCl as the reference electrode placed in the same compartment, and Pt-

coil was used as the auxiliary electrode which was placed in the other compartment separated by 

a frit. Controlled potential electrolysis of the complex has been done in acetonitrile (20 mL) with 

TBAPF6/TBABF4 as the supporting electrolyte until the calculated final charge was attained. All 

the potentials were measured against a Ag/AgCl reference electrode. Potentials were applied to 

the cell by a BAS 50W potentiostat/galvanostat, and the UV-visible spectra after bulk-

electrolysis were collected with a Varian Cary 50 apparatus at room temperature.  

2.2.11. Chemical Reduction 

Chemical reduction experiments were performed to monitor the electron acceptance rate of 

various complexes. These experiments were performed in CH3CN/H2O (90:10% v/v) upon 

addition of ascorbic acid (reductant) where complexes were evaluated spectrophotometrically on 

a Varian Cary 50 spectrophotometer, at their λmax, respectively by the disappearance/decrease of 
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their ligand-to-metal charge transfer (LMCT) at room temperature. The absorption values were 

converted into concentration using their absorptivity molar coefficient values (ε, M
-1

cm
-1

). All 

reactions were monitored throughout time until the absorbance at each λmax value was constant. 

Reactions were performed using the following conditions: In a 4 mL cuvette (1 cm optical path) 

2700 μL of a freshly prepared and degassed acetonitrile solution of the complex was added 

([C]final 1.80 × 10
-4

 M), and the reaction was initiated by the addition 300 μL of a aqueous 

ascorbic acid (pH ~ 3.0 adjusted with HNO3; [AA]final = 1.80 × 10
-2

 M). The concentration of the 

complexes versus the elapsed time was plotted and fitted using a typical first order exponential 

decaying equation [C] = [C]0 × e
kt
 and linearized using the first order rate law ln[C] = - kt + 

ln[C]0; where [C] is concentration at a given time (M); [C]0 is the initial concentration (M), k is 

the rate constant (s
-1

) and t is time (s). The half-lives for the compounds were calculated using 

the expression t½ = ln2/k where t½ is the half-life and k is the rate constant (s
-1

). 

2.2.12. Electrocatalysis (Electrochemistry, Bulk Electrolysis, and Gas Chromatography) 

Proton reduction electrocatalysis was tested for complexes via cyclic voltammetry in presence of 

either trifluoroacetic acid (TFA, pKa: 12.7 in CH3CN), triethyl ammonium chloride (Et3NHCl, 

pKa: 18.7 in CH3CN), or acetic acid (HOAc, pKa: 22.3 in CH3CN).
4
 Glassy carbon was used as 

the working electrode, platinum wire as the auxiliary electrode, and Ag/AgCl as the reference 

electrode, with TBAPF6 or TBABF4 as the supporting electrolyte. Overpotentials (η) were 

calculated from the observed changes in the cyclic voltammogram followed by subtracting the 

thermodynamic standard potential for H
+
/H2 in CH3CN in the presence of the corresponding 

acids (after considering the homoconjugation effect
4
) from the experimental half-wave potential 

for the catalytic peak in the presence of particular amount of acids. To determine the amount of 

hydrogen released, bulk electrolysis has been done in a custom-made air-tight H-type cell using a 
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mercury-pool as the working electrode, Ag/AgCl as the reference, both located in the main 

chamber. A coiled Pt wire was used as the auxiliary electrode isolated on another compartment 

separated by a frit. TBAPF6/TBABF4 was used as the supporting electrolyte. The main chamber 

was filled with an electrolyte solution and a proton source in CH3CN, whereas the smaller 

compartment was filled with the electrolyte solution in CH3CN. The applied potential for bulk 

electrolysis was measured against Ag/AgCl and potentials are converted against Fc/Fc
+
 upon 

subtracting the electrochemical potential of Fc/Fc
+
 from the applied potential versus Ag/AgCl in 

similar condition. In a typical test, the cell was purged with N2 gas for 20 min followed by 

sampling of the head space gas (100μl) to ensure an O2 free environment in the gas-

chromatograph. The GC is a Gow-Mac 400 equipped with a thermal conductivity detector and a 

8’ x 1/8” long 5Å molecular sieve column operating at 60°C with N2 as the carrier gas. The 

calibration was carried out with hydrogen (H2) gas (Hydrogen GC grade 99.99+ %, Scotty 

analyzed gases, Sigma Aldrich). The solution (no catalyst) was electrolyzed for three hours at 

appropriate potential and the head space gas was injected into the GC to record the amount of 

hydrogen generated. Then the cell was purged with N2 gas for another 20 min followed by 

injection of the catalyst dissolved in CH3CN. Bulk electrolysis was conducted for three hours at 

the same potential and the head space gas (100 μL) was injected to the GC instrument. The 

amount of hydrogen produced was measuered. The turnover number was calculated after 

background substraction as the ratio of moles of dihydrogen produced over moles of catalyst 

used. Faradaic efficiency was calculated from GC measurements.  

   For water reduction, similar procedure has been followed. A phosphate buffer of 1M was 

prepared by mixing NaH2PO4 (0.454 mol, 27.24 g) and Na2HPO4 (0.545 mol, 38.695 g)] in 

ultrapure water. Then, the pH was adjusted to 7 by adding suitable amounts of NaOH or HCl. 
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Cyclic voltammetric experiments were performed to determine the onset overpotential for 

hydrogen generation using Hg-pool as the working electrode, Pt-wire as the auxillary electrode, 

and Ag/AgCl as the reference electrode. Comparison with the blank (electrode only) was 

performed to determine the shift of onset overpotential by introducing the complex. For 

controlled potential experiment, the main chamber was filled with 20 mL of the phosphate buffer 

solution whereas the glass-fitted chamber was filled with 5 mL of solution. Bulk electrolysis at 

appropriate potential was applied in presence of the same set of electrodes as the CV experiment 

for complexes to generate H2. The GC is a Gow-Mac 400 with a thermal conductivity detector 

and 8’ X 1/8” long 5Å molecular sieve column operating at 60°C was used with N2 as the carrier 

gas. The calibration was carried out with hydrogen gas (Hydrogen GC grade 99.99 %, Scotty 

analyzed gases, Sigma Aldrich). 

2.2.13. DFT calculations 

DFT calculation is a very important tool for this research. It has been often used to determine the 

relative energies of the molecular orbitals associated with these complexes. Furthermore, this 

method gives valuable insight into the redox potentials and sequence during the electrochemistry 

experiments. It can also provide the energy associated with different processes, thus can predict a 

plausible mechanistic path, which is very relevant for proton or water reduction catalysis. 

Furthermore, TD-DFT calculations can simulate the UV-visible spectra in a particular solvent. 

The DFT calculations were executed by using Gaussian,
5a

 after using B3PW91
5b-d 

functional 

with SDD, 6-311++G(d,p), D95 basis sets.
5e-g

 These DFT and TD-DFT calculations were 

executed by the collaboration with Professor H. B. Schlegel’s lab in the chemistry department of 

Wayne State University. Dr. Marco Allard, Dr. Shivnath Mazumder, and Mr. Xuetao Shi 

performed these calculations. 
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CHAPTER 3 

MODULATION OF ELECTRONIC AND REDOX PROPERTIES IN PHENOLATE-

RICH COBALT(III) COMPLEXES AND THEIR IMPLICATIONS FOR CATALYTIC 

PROTON REDUCTION 

 

Portions of the text in this chapter were reprinted or adapted with permission from: Basu, D.; 

Allard,
 
M. M.; Xavier, F. R.; Heeg, M. J.; Schlegel, H. B.; Verani, C. N.* Dalton Trans. 2015, 

44, 3454. All rights to the work are retained by the authors and any reuse requires permission of 

the authors. 

 

3.1. Introduction 

Considering the impending limitations of fossil fuels and the increasing demand for 

energy, the search for earth-abundant catalysts capable of hydrogen production is at the core of 

an economy based on renewable fuels.
1 

The cobalt ion has been used in several proton-reduction 

electrocatalysts because of its energetically viable conversion from 3d
6
 

LS
Co(III) or 3d

7
 Co(II) 

into the procatalytic nucleophile 3d
8
 

LS
Co(I) species.

2
 This species captures a proton to yield a 

reactive Co(III)-H species which can either stay in the Co(III)-H state or undergoes reduction to 

generate a Co(II)-H species; either of them able to react with another proton, thus yielding H2.
3
 

Several ligands have been used to accommodate the cobalt ion; among the most studied figure 

oximes and polypyridines in pending-arm, macrocyclic, and iminopyridine motifs.
4
 Although 

phenolate-based cobalt complexes have been used in olefin and epoxide polymerization,
5
 these 

complexes are less favored for proton reduction because of the high overpotentials associated 

with the Co(II)/Co(I) couple, but the search for new architectures that either yield new catalysts 

or allow for rationalizations about catalyst design
6
 is impending.   

 Our group is engaged in the chemistry of cobalt complexes with redox-active phenolate- 

rich environments focusing on tridentate [NN’O]
7
 and pentadentate [N2O3]

8
 ligands to predict 
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structural, electronic, and redox properties of metallosurfactants, and the reactivity of 

metallodrugs. In [N2O3] environments with three t-butyl-decorated phenolates
8
 four reversible 

redox-accessible states are present; three involving distinct phenolato/phenoxyl radical couples 

between 0.3 and 1.0 VFc+/Fc and one process associated with the Co(III)/Co(II) couple at -0.6 

VFc+/Fc. The redox processes were cycled 30 times without major decomposition at the surface of 

the electrode. These results are encouraging because reversibility of redox processes along with 

modulation of the Co(III)/Co(II) potential may be relevant for the development of proton 

reduction catalysts. 

With the previous arguments in mind, we hypothesize that the nature of phenolate-linked 

substituent will modulate the potential by which cobalt(III)/(II) reduction takes place. 

Furthermore, based on recent literature,
9
 we suggest that adventitious hydrogen-bonding may 

enhance the desired reversibility of the metal-based process.  

In this chapter, we investigate the structural, electronic and redox behavior of five 

complexes, shown in Scheme 1, by means of experimental and computational methods. We also 

evaluate their behavior as electron acceptors in ascorbic acid-mediated reductions and in proton 

reduction in acidic media. The results follow. 

 

                                                              

 

 

 

 

 

 

Scheme 3.1. Cobalt(III) complexes of phenolate-rich ligands. 
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3.2. Experimental 

3.2.1. X-ray structural determination 

Diffraction data for 1 and 2 were measured on a Bruker X8 APEX-II kappa geometry 

diffractometer with Mo radiation and a graphite monochromator. Frames were collected at 100 K 

with the detector at 40 mm and 0.3 degrees between each frame and were recorded for 10 s. 

APEX-II
10

 and SHELX
11

 software were used in the collection and refinement of the models. 

Crystals of 1 (CCDC # 1012180) appeared as dark needles. 106022 reflections were measured, 

yielding 7148 unique data (Rint = 0.074). Hydrogen atoms were placed in calculated positions. 

These neutral molecules crystallized without ions, solvent or appreciable disorder. Crystals of 2 

(CCDC # 1012179) were dark rods. 58214 reflections were counted, which averaged to 7895 

independent data (Rint = 0.089). Hydrogen atoms were placed at calculated positions. The solvate 

molecules occupied sites of symmetry and this did not refine without disorder in the space group 

C2/c. The PLATON program SQUEEZE
12

 was utilized to include the solvate electrons resulting 

in an empirical formula of 1 complex: 1 dichloromethane molecule. 

A red crystal of 5 (CCDC # 1012178) was mounted and collection of data was performed 

by using a Bruker CCD diffractometer. Omega and phi scans (0.5°/frame in the period of 30 s) 

were used to measure the data. The program COSMO
13 

determined the sum of the images 

whereas completeness and redundancy was found to be 100% out to 0.83 Å and 4.0, 

respectively. APEX II software
14

 was used to determine all the parameters related to the unit cell 

and SAINT was used for refinement. SAINT software
15

 was used for the reduction of data. 

SADABS
16 

was used to perform absorption and scaling related adjustments. SHELXS-97 

program was implemented to solve the crystal structures and further refined by the method of 

least squares on both F
2
 and SHELXL- 97 (SHELXTL-PC V 6.10).

12
 This structure of 5 was 

measured and solved by Dr. Richard Staples from MSU and displayed C2/c (# 15) space group. 
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Anisotropic corrections for all atoms (non-hydrogen) were executed. Geometrical techniques 

were used to calculate hydrogen atom and further refined by models based on riding method. T-

butyl groups exhibited some sorts of disorder and therefore an implementation of a few restraints 

were performed. No sign of decomposition was observed during the mounting, collection, and 

solving processes. All the structural representation was shown at an ellipsoidal probability of 

50%. 

Table 3.1. Crystal Data for the complexes 1, 2, and 5.  

 1 2                5 

Empirical formula C28H19Cl6CoN2O4 C29H21Br6Cl2CoN2O4     C60H82CoN3O3 

Formula weight 719.08 1070.77 952.22  

Temperature (K) 100(2) 100(2) 173(2) 

Wavelength (Å) 0.71073 0.71073 0.71073 

Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c Monoclinic, C2/c 

a (Å) 22.0260(10) 28.251(3) 41.003(4) 

b (Å) 12.9174(6) 13.5819(10) 14.7728(16) 

c (Å) 22.6310(12) 22.091(2) 19.051(2) 

α (º) 90 90 90 

β (º) 116.109(3) 125.407(7) 102.408(10) 

γ (º) 90 90 90 

Volume (Å
3
) 5781.9(5) 6908.9(10) 11270(2) 

Z 8 8 8 

Calculated density (Mg/m
3
) 1.652 2.059 1.122 

Absorption coefficient (mm
-1

) 1.187 7.629 0.348 

F (000) 2896 4096 4112 

R(F) (%) 4.39 8.22 6.03 

Rw(F) (%) 6.70 11.29 11.29 

    
a
R(F) = Σ║Fo│– │Fc ║/│Fo│; Rw(F) = [Σw(Fo

2
 – Fc

2
)
2
/Σw(Fo

2
)
2
]
1/2

 for I > 2σ(I) 

 

3.2.2. Computational methods 

Electronic structure calculations were carried out with the Gaussian 09 suite of programs
17

 using 

Density Functional Theory (DFT). The B3PW91/6-31G(d) level of theory
18

 was employed 

throughout. Geometries were fully optimized without symmetry constraints, and stationary 
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points were verified via frequency analysis. Solvent effects in dichloromethane and/or 

acetonitrile were estimated using the built-in default settings of the IEF-PCM polarizable 

continuum model.
19

 Vertical electronic excitation energies and intensities were calculated using 

time-dependent density functional theory (TD-DFT).
20

 Molecular orbitals were plotted with 

GaussView and UV-visible spectral plots were prepared using SWizard with a full width at half-

height of 2000 cm
-1

. All optimized geometries agreed well with the crystallographic data 

available for all relevant structures. 

3.2.3. Catalytic activity 

Proton reduction electrocatalysis was tested for 1 and 4 via cyclic voltammetry in presence of 

acetic acid (HOAc, pKa: 22.3 in CH3CN)
21a

 with tetra-butyl ammonium hexafluorophosphate 

(TBAPF6) as supporting electrolyte. For bulk electrolysis, the main chamber was filled with an 

electrolyte solution and proton source (TBAPF6: 1.56 g; HOAc: 0.24 g [4 mmol], 20 mL 

acetonitrile) and the glass-fitted chamber was filled with another electrolyte solution (TBAPF6: 

0.39 g; 5 mL acetonitrile). Bulk electrolysis was conducted with catalyst (0.04 mmol) in 

acetonitrile (CH3CN) for 180 minutes at -1.8 VAg/AgCl and the head space gas (100 μL) was 

injected into the GC to record the amount of dihydrogen produced. After the background 

subtraction, the turnover number was calculated as the ratio of the moles of dihydrogen produced 

over the moles of catalyst used. Faradaic efficiency was calculated from the gas chromatography 

measurements. 
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3.2.4. Synthetic procedures 

The 2,4-substituted chloromethylphenols (pendant arms) where –R can be Cl or Br were 

synthesized under similar conditions (vide infra). The precursor 2-(chloromethyl)-4,6-diiodo 

phenol, 2-(chloromethyl)-4,6-di-tert-buytl-phenol, and the ligand 6,6ʹ-(((2-((3,5-di-tert-butyl-2-

hydroxybenzyl)amino)phenyl)azanediyl)bis(methylene)bis(2,4-di-tert-butyl-phenol) (H3L
tBu

) 

were synthesized according methods already described in the literature.
7c,8  

  The precursor 2,4-substituted-hydroxymethylphenols. A 70 mL methanol solution of the 

3,5-di-substituted-2-hydroxybenzaldehyde (25.0 mmol) was reduced by NaBH4 (60 mmol) at                   

0 °C overnight. Then, the solvent was removed under reduced pressure and the residual white 

solid was dissolved in water and the pH was adjusted to ~ 5.0 with 2.0 M HCl. The product was 

extracted from water using dichloromethane and dried over anhydrous Na2SO4. The solution was 

filtered and the solvent was removed by rotary evaporation yielding a white colored solid. The 

crude products were used with no further purification. 2,4-dichloro-6-(hydroxymethyl)phenol: 

Yield: 70%. IR (KBr, cm
-1

) 3281(s) (OH); 3050(w) (Ar-CH); 2948(w) (alkyl-CH); 1596(w), 

1580(w), 1474(s) (Ar-C-C); 1166(m) (C-O). 
1
H-NMR [400 MHz, CDCl3, 300 K] δ/ppm = 2.259 

[s, 1H (aliphatic-OH)]; 4.779 [s, 2H (CH2)]; 6.654 [s, 1H (aryl-OH)]; 7.129 [s, 1H (aryl)]; 7.289 

[s, 1H (aryl)]. 2,4-dibromo-6-(hydroxymethyl)phenol: Yield: 70%. IR (KBr, cm
-1

) 3508(m), 

3241(m) (OH); 3075(w) (Ar-CH); 2934(w) (alkyl-CH); 1456(s) (Ar-C-C); 1141(s) (C-O). 
1
H-

NMR [400 MHz, CDCl3, 300K] δ/ppm = 2.632 [s, 1H (aliphatic-OH)]; 4.786 [s, 2H (CH2)]; 4.8 

[s, 1H (aryl-OH)]; 6.921 [s, 1H (aryl)]; 7.590 [s, 1H (aryl)]. 

The precursor 2,4-substituted-chloromethylphenols. Thionyl chloride (50 mmol) was 

added to the solution of the previously synthesized alcohols (20 mmol) in 30 mL of 

dichloromethane. After stirring it overnight, the solvent was removed by rotary evaporation and 



www.manaraa.com

57 
 

 
 

washed five times with n-pentane. The 2,4-disubstituted-6-(chloromethyl)phenols were isolated 

as a white solid and used with no further purification. 2,4-dichloro-6-(chloromethyl)phenol: 

Yield: 94%. IR (KBr, cm
-1

) 3474(s) (OH); 3081(w) (Ar-CH); 2978(w) (alkyl-CH); 1597(w), 

1580(w), 1469(s) (Ar-C-C); 1161(s) (C-O). 
1
H-NMR [400 MHz, CDCl3, 300K] δ/ppm = 4.618 

[s, 2H (CH2)]; 5.775 [s, 1H (OH)]; 7.281 [s, 1H (aryl)]; 7.322 [s, 1H (aryl)]. 2,4-dibromo-6-

(chloromethyl)phenol: Yield: 90%. IR (KBr, cm
-1

) 3462(s) (OH); 3066(w) (Ar-CH); 2971(w) 

(alkyl-CH); 1461(s) (Ar-C-C); 1143(s) (C-O). 
1
H-NMR [400 MHz, CDCl3, 300K] δ/ppm = 

4.618 [s, 2H (CH2)]; 5.761 [s, 1H (aryl-OH)]; 7.445 [s, 1H (aryl)]; 7.577 [s, 1H (aryl)]. 

The proligands. Phenylene diamine (2 mmol) was treated with the appropriate 2,4-

disubstituted-6-(chloromethyl)phenol (6.2 mmol) in presence of triethylamine (8 mmol) in 80 

mL of dichloromethane for 3 days under reflux to yield a yellow colored solution. The mixture 

was washed three times with brine solution (3 × 200 mL) to remove excess triethylamine, dried 

over anhydrous sodium sulfate and the crude product was isolated by solvent rotoevaporation.  

Unreacted chloride was removed by washing the solid with cold hexane to yield a yellow-

colored solid. Upon coordination to the metal these amine proligands are stabilized as imine 

ligands.
8
 

6,6ʹ-(((2-((3,5-dichloro-2-hydroxybenzyl)amino)phenyl)azanediyl)bis(methylene)bis(2,4-

dichlorophenol) - H3Lʹ
Cl

. Yield: 75%. IR (KBr, cm
-1

) 3505(w), 3414(w) (OH); 3263(w) (NH); 

3078(w) (Ar-CH); 2983(w) (alkyl-CH); 1599(m), 1467(s) (Ar-C-C); 1165(m) (C-O). 
1
H-NMR 

[400 MHz, CDCl3, 300K] δ/ppm = 4.093 [s, 4H (CH2)]; 4.263 [s, 2H (CH2)]; 6.61 [d, 1H (aryl)]; 

6.776 [t, 1H (aryl)]; 6.887 [s, 2H (aryl)]; 7.011 [t, 1H (aryl)]; 7.068 [s, 1H (aryl)]; 7.167 [d, 1H 

(aryl)]; 7.212 [s, 2H (aryl)]; 7.3 [s, 1H (aryl)]. ESI pos. in MeOH: m/z = 630.9670 for [H3L1 + 

H
+
]

+
. 
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6,6ʹ-(((2-((3,5-dibromo-2-hydroxybenzyl)amino)phenyl)azanediyl)bis(methylene)bis(2,4-

dibromophenol) - H3Lʹ
Br

. Yield: 70%. IR (KBr, cm
-1

) 3490(w) (OH); 3252(w) (NH); 3070(w) 

(Ar-CH); 2982(w) (alkyl-CH); 1598(m), 1455(s) (Ar-C-C); 1144(m) (C-O). 
1
H-NMR [400 MHz, 

CDCl3, 300K] δ/ppm = 4.096 [s, 4H (CH2)]; 4.249 [s, 2H (CH2)]; 6.644 [d, 1H (aryl)]; 6.798 [t, 

1H (aryl)]; 7.023 [t, 3H (aryl)]; 7.157 [d, 1H (aryl)]; 7.268 [s, 1H (aryl)]; 7.475 [s, 2H (aryl)]; 

7.542 [s, 1H (aryl)] ESI pos. in MeOH: m/z = 894.7 for [H3L2  + H
+
]

+
. 

6,6ʹ-(((2-((2-hydroxy-3,5-diiodobenzyl)amino)phenyl)azanediyl)bis(methylene))bis(2,4-

diiodophenol) - H3Lʹ
I
. Yield: 73%. IR (KBr, cm

-1
) 3385(w) (OH); 3226(w) (NH); 3061(w) (Ar-

CH); 2920(w) (alkyl-CH); 1598(m), 1451(s) (Ar-C-C); 1147(m) (C-O). 
1
H-NMR [400 MHz, 

CDCl3, 300K] δ/ppm = 4.07 [s, 4H (CH2)]; 4.238 [s, 2H (CH2)]; 6.733[t, 2H (aryl)]; 6.867 [t, 1H 

(aryl)]; 7.077 [t, 2H (aryl)]; 7.183 [d, 2H (aryl)]; 7.526 [s, 1H (aryl)]; 7.809 [s, 1H (aryl)]; 7.961 

[s, 1H (aryl)] ESI pos. in MeOH: m/z = 1182.582 for [H3L3  + H
+
]

+
. 

The Complexes. Caution: Perchlorate salts are potentially explosive and should be 

handled with utmost care and in small quantities. Complexes 1-4 have been synthesized under 

aerobic conditions using the general procedure described as follows: To a 30 mL solution of 

ligand (1 mmol) in dichloromethane sodium methoxide (0.162 g, 3 mmol) in 30 mL of methanol, 

was added and the mixture was stirred for 10 minutes. A 20 mL methanol solution of 

[Co(H2O)6](ClO4)2 (0.365 g, 1 mmol) was then added dropwise to the mixture in a period of 5 

minutes. After the addition was complete, the solution was refluxed for 4 hours to ensure the 

completion of reaction, then the mixture was concentrated to 10 mL. Slow evaporation of the 

solvent gives rise to brown colored precipitate which was collected by vaccum filtration. Further 

recrystalization from different solvent mixtures give crystalline pure product.  
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[Co
III

(L
Cl

)MeOH] (1). Recrystallized from MeOH/diethyl ether (1:1). Yield. 80%. IR 

(KBr, cm
-1

) 3444(w) (OH); 3063(w) (Ar-CH); 2950(w) (alkyl-CH); 1612(s), 1450(s) (Ar-C-C); 

1584(m) (C=N); 1177(m) (C-O); No ClO4
-
. 

1
H-NMR [400MHz, d

6
-DMSO, 300K] δ/ppm = 

3.150 [d, 3H (CH3)]; 3.967 [d, 2H (CH2)]; 4.083 [q, 1H (OH)]; 4.767 [d, 2H (CH2)]; 6.734 [s, 2H 

(aryl)]; 6.820 [s, 2H (aryl)]; 7.138 [t, 1H (aryl)]; 7.300 [t, 1H (aryl)]; 7.552 [s, 1H (aryl)]; 7.645 

[s, 1H (aryl)]; 7.686 [d, 1H (aryl)]; 7.955 [s, 1H (N=CH)]; 8.056 [d, 1H (aryl)]. ESI pos. in 

MeOH: m/z = 684.8624 for [Co
III

(L΄
Cl

) + H
+
]

+
. Anal. Calcd for C28H19Cl6CoN2O4: C, 46.77; H, 

2.66; N, 3.90. Found: C, 46.46; H, 2.64; N, 4.00. 

[Co
III

(L
Br

)MeOH] (2). Recrystallized from MeOH/DCM (1:1). Yield. 85%.  IR (KBr, cm
-

1
) 3263(w) (OH); 3050(w) (Ar-CH); 2945(w) (alkyl-CH); 1612(m), 1442(s) (Ar-C-C); 1584(m) 

(C=N); 1157(m) (C-O); No ClO4
-
. 

1
H-NMR [400MHz, d

6
-DMSO, 300K] δ/ppm = 3.149 [d, 3H 

(CH3)]; 3.977 [d, 2H (CH2)]; 4.077 [q, 1H (OH)]; 4.8 [d, 2H (CH2)]; 6.877 [s, 2H (aryl)]; 7.032 

[s, 2H (aryl)]; 7.145 [t, 1H (aryl)]; 7.295 [t, 1H (aryl)]; 7.693 [d, 1H (aryl)]; 7.724 [s, 1H (aryl)]; 

7.843 [s, 1H (aryl)]; 7.981 [s, 1H (N=CH)]; 8.054 [d, 1H (aryl)]. ESI pos. in MeOH: m/z = 

954.5676 for [Co
III

(L΄
Br

) + Li
+
]

+
. Anal. Calcd for C28H19Br6CoN2O4: C, 34.11; H, 1.94; N, 2.84. 

Found: C, 33.60; H, 1.81; N, 2.95. 

[Co
III

(L
I
)MeOH](3).

 i
PrOH Recrystallized from DCM/isopropanol (1:1). Yield. 90%. IR 

(KBr, cm
-1

) 3443(w) (OH); 3047(w) (Ar-CH); 2925(w) (alkyl-CH); 1610(m), 1427(s) (Ar-C-C); 

1581(m) (C=N); 1150(m) (C-O); No ClO4
-
. 

1
H-NMR [400MHz, d

6
-DMSO, 300K] δ/ppm = 

3.147 [d, 3H (CH3)]; 3.945 [d, 2H (CH2)]; 4.01 [q, 1H (OH)]; 4.808 [d, 2H (CH2)]; 6.978 [s, 2H 

(aryl)]; 7.065 [t, 1H (aryl)]; 7.116 [t, 1H (aryl)]; 7.271 [s, 2H (aryl)]; 7.718 [d, 1H (aryl)]; 7.843 

[d, 1H (aryl)]; 7.945 [s, 1H (N=CH)]; 8.044 [s, 2H (aryl)]. ESI pos. in MeOH: m/z = 1242.4844 

for [Co
III

(L΄
I
) + Li

+
]

+
. Anal. Calcd for C31H27I6CoN2O5: C, 28.04; H, 2.05; N, 2.11 Found: C, 
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28.55; H, 1.55; N, 2.52. 

[Co
III

(L
t-Bu

)MeOH]
8
 (4). Recrystallized from MeOH/DCM. 

1
H-NMR [400MHz, d

6
-

DMSO, 300K] δ/ppm = 0.86 [s, 18H (t-butyl)]; 1.00 [s, 18H (t-butyl)]; 1.24 [s, 9H (t-butyl)]; 

1.62 [s, 9H (t-butyl)]; 3.145 [d, 3H (CH3)]; 3.855 [d, 2H (CH2)]; 4.085 [q, 1H (OH)]; 4.865 [d, 

2H (CH2)]; 6.46 [s, 2H (aryl)]; 6.53 [s, 2H (aryl)]; 6.88 [t, 1H (aryl)]; 7.08 [t, 1H (aryl)]; 7.10 [s, 

1H (aryl)]; 7.28 [s, 1H (aryl)]; 7.53 [s, 1H (N=CH)]; 7.645 [d, 1H (aryl)]; 8.035 [d, 1H (aryl)].  

[Co
III

(L
t-Bu

)4-t-bu-pyridine] (5). To a 20 mL solution of complex 4 (0.425g, 0.5 mmol) in 

DCM, excess 4-t-butyl pyridine (0.135, 1 mmol) in 20 mL of methanol was added and refluxed 

for 2 hours. To ensure the completion of this reaction it has been further stirred for 2 hours and 

then concentrated to 10 mL. Slow evaporation of the solvent gives rise to brown colored 

precipitate which was collected by vaccum filtration. Recrystallization form MeOH/DCM (1:1) 

gives crystalline pure product. Yield. 95%. IR (KBr, cm
-1

) 3088(w), 3030(w) (Ar-CH); 2952(s), 

2903(m), 2868(m) (t-bu C-H); 1616(m), 1602(m), 1463(m) (Ar-C-C); 1585 (m) (C=N); No 

ClO4
-
. 

1
H-NMR [400MHz, d

6
-DMSO, 300K] δ/ppm = 0.87 [s, 18H (t-butyl)]; 1.00 [s, 18H (t-

butyl)]; 1.25 [s, 9H (t-butyl)]; 1.35 [s, 9H (t-butyl)]; 1.64 [s, 9H (t-butyl)]; 3.89 [t, 2H (CH2)]; 

4.40 [d, 1H (CH2)]; 4.87 [d, 1H (CH2)]; 6.46 [d, 2H (aryl)]; 6.54 [s, 1H (aryl)]; 6.64 [s, 

1H(aryl)]; 7.12 [d, 2H (aryl)]; 7.28 [s, 1H (aryl)]; 7.38 [s, 1H (aryl)]; 7.54 [s, 1H (aryl)]; 7.71 [d, 

1H (aryl)]; 7.80 [d, 1H (aryl)]; 7.94 [s, 1H (aryl)]; 8.05 [d, 1H (aryl)]; 8.46 [d, 1H (aryl)]; 9.07 

[d, 1H (aryl)]. ESI pos. in MeOH: m/z = 951.5703 for [Co
III

(L
t-Bu

)4-t-bu-pyridine]
+
. Anal. Calcd 

for C60H82CoN3O3: C, 75.68; H, 8.68; N, 4.41  Found: C, 75.21; H, 8.48; N, 4.27. 
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3.3. Results and discussions 

3.3.1. Syntheses and characterizations 

A series of asymmetrical pentadentate ligands was synthesized by treatment of 1,2-

diaminobenzene with 2,4-disubstituted-chloromethylphenol precursors bearing chloro (1), bromo 

(2), iodo (3) and t-butyl (4 and 5) functionalities in presence of triethylamine in dichloromethane 

(Figure 3.1). Pale yellow solids were obtained for each ligand after brine extraction and 

characterized with spectroscopic (FTIR and 
1
H-NMR) and ESI-MS spectrometric methods.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Synthesis of the precursors and ligands. 

The ligands were dissolved in methanol and treated with cobalt(II) perchlorate under aerobic 

conditions and in the presence of sodium methoxide to afford the desired cobalt(III) complexes 

1-4 (Figure 3.2.). During the course of the reaction, the cobalt(II) ion is oxidized into cobalt(III) 

and the ligand is oxidized from its amine to imine form. Complex 5 has been synthesized by 

reaction of 4 with excess of 4-t-butyl-pyridine in a MeOH/DCM (1:1) solvent mixture (Figure 
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3.2.). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Synthesis of the cobalt(III) complexes 1-5. 

 

Compounds 1-5 were characterized by spectroscopic and spectrometric methods. The FTIR 

spectra for each complex confirms a C=N streaching around 1585 cm
-1

 resulting from ligand 

oxidation. The absence of peaks associated with the perchlorate anions confirms 1-5 as neutral 

Co(III) species, in excellent agreement with the resulting elemental analyses. High-resolution 

ESI mass spectra show the species [M+H
+
]

+
, [M+Li

+
]

+
, and [M+Li

+
]

+
, for 1-3, respectively and 
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[M]
+
 for 5 (Figure 3.3). Experimental and simulated isotopic distributions are in agreement with 

the proposed molecular composition.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Experimental (bars) and simulated (line) isotopic distribution for the molecular ions 

of complexes 1-3 & 5. 

 

Due to the diamagnetic nature of the low spin cobalt(III) complexes the 
1
H-NMR spectra for all 

the complexes were taken in d
6
-DMSO. The spectra have shown appropriate line-splitting 

patterns for 1-4 with ten typical aromatic protons, the azomethine proton resonance (over the 

1 2 

3 5 
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aromatic region), and four methylene hydrogens between 4.0 and 5.0 ppm. A methanol molecule 

bound to the sixth coordination position of the Co(III) center was assigned with a resonance line 

between 3.0 and 3.3 ppm for 1-4. Species 4 shows intense peaks between 0 to 2 ppm due to the 

presence of tert-butyl substituents. Selected 
1
H-NMR spectra for 1 and 4 are shown in Figure 

3.4. Species 1, 2 and 5 had their molecular structures solved by X-ray analysis, while complex 4 

was described previously.
8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. 
1
H-NMR spectra for compounds 1 and 4 in d

6
-DMSO. 
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3.3.2. Molecular structures 

Complexes 1, 2 and 5 yielded well-formed brown crystals used for single crystal X-ray 

diffractometric analysis. The atomic labeling schemes of 1, 2 and 5 are shown in Figure 3.5. 

while selected bond lengths and angles are shown in Table 3.2. 

 

             [CoIII(LCl)MeOH] (1)                 [CoIII(LBr)MeOH] (2)           [CoIII(Lt-Bu)4-t-bu-pyridine] (5) 

Figure 3.5. ORTEP
22

 representations of 1, 2 and 5 (left to right).  

Complexes 1 and 2 belong to a C2/c monoclinic space group. Both crystal structures 

reveal a mononuclear [Co
III

L
X
(MeOH)] neutral complex unit (X = Cl or Br) where each of the 

cobalt(III) centers is in an [N2O4] coordination environment. A distorted octahedral geometry is 

imposed over the metallic ion by the three phenolate arms, the rigid azomethine, the amine 

moieties, and the coordinated methanol molecule, as summarized by the selected bond lengths 

and angles shown in Table 3.2. In all three structures the O1 oxygen atoms associated with the 

iminophenolates are coordinated to the Co1 center in a trans position to the N2 amine nitrogen 

atom, while the O2 and O3 aminophenolate oxygen atoms are trans to each other. The O4 

oxygen atom of the weakly bound protonated molecule of methanol is trans to the N1 imine 

nitrogen atoms. This Co–O(4) is the longest, reaching 1.95 to 2.01 Å. The Co--Ophenolate bonds 
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vary between 1.87 and 1.92 Å, with the Co-O2 bonds being slightly longer than Co-O1 and Co-

O3. The Co-N bonds show considerable length variability, with a short Co-N1 ≈ 1.87 Å 

associated with the C=N group (N1–C7 ≈ 1.29 Å) and longer Co-N2 ≈ 1.98 Å associated with 

the amine group.  The average N1-C8 bond length at 1.41Å for 1 and 2 is slightly shorter than 

the equivalent N2-C13 (av. 1.47Å), thus suggesting electron delocalization along with the 1,2-

diaminobenzene ring and the iminophenolate arm (Figure 3.6). Shorter O1-C1 (av. 1.30 Å) and 

C6-C7 (av. 1.42 Å) bonds reinforce the argument while the C6-C7-N1-C8 dihedral angles of 

177.7(3)° for 1 and 174.3(8)° for 2 reveal planarity indicative of a conjugated π framework. The 

geometrical arrangement, as well as the bond lengths and angles are isostructural with the 

previously reported 4 and other species in similar [N2O3OMeOH] environments.
8 

 

 

 

 

 

 

 

 

Figure 3.6. Fully conjugated structure of phelonate-imine-diamino aromatic ring system. 

Complex 5 belongs to a C2/c monoclinic space group with similar pseudo-octahedral 

geometry imposed by the coordination sphere around the Co(III) ion. However, species 5 shows 

4-t-butyl-pyridine replacing the methanol found in the sixth position of 1 and 2. The Co1-N3 

distance reaches 2.011 Å, while other chemical bonds are comparable to those previously 
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described, including the 1,2-diaminobenzene/iminophenolate plane with a C38-C37-N2-C32 

dihedral angle of 178.6(4)
o
. The t-butyl-pyridine organizes itself perpendicular to that plane. 

Table 3.2. Selected bond lengths and bond angles. 

1 2 5 

Co1-N1    1.878(2) Co1-N1    1.879(8) Co1-N2    1.876(3) 

Co1-N2    1.986(2) Co1-N2    1.981(8) Co1-N1    1.982(3) 

Co1-O1    1.871(2) Co1-O1    1.886(7) Co1-O3    1.886(2) 

Co1-O2    1.9077(19) Co1-O2    1.925(7) Co1-O2    1.902(2) 

Co1-O3    1.8834(19) Co1-O3    1.870(7) Co1-O1    1.894(2) 

Co1-O4    1.9627(19) Co1-O4    1.955(7) Co1-N3    2.011(3) 

N1-C7      1.296(4) N1-C7     1.305(12) N2-C37     1.298(4) 

N2-C14    1.517(4) N2-C14   1.520(13) N1-C16    1.507(4) 

N2-C21    1.498(4) N2-C21   1.501(11) N1-C1      1.510(4) 

N1-C8     1.426(4) N1-C8    1.406(12) N2-C32    1.416(5) 

N2-C13   1.470(3) N2-C13  1.473(14) N1-C31  1.467(4) 

O1-C1     1.297(3) O1-C1    1.302(12) O3-C39   1.302(4) 

O2-C20   1.331(3) O2-C20  1.357(11) O2-C18 1.335(4) 

O3-C27   1.316(3) O3-C27  1.336(10) O1-C7 1.336(4) 

N1-Co1-O2  92.88(9) N1-Co1-O2  92.6(3) N2-Co1-O2  89.86(12) 

O1-Co1-O2  85.41(9) O1-Co1-O2  86.3(3) O3-Co1-O2  86.43(10) 

O2-Co1-O4  87.93(8) O2-Co1-O4  89.4(3) O2-Co1-N3  87.95(11) 

O2-Co1-N2  94.81(9) O2-Co1-N2  93.4(3) O2-Co1-N1  95.10(11) 

O1-Co1-N1  96.04(10) O1-Co1-N1  95.4(3) O3-Co1-N2  94.85(11) 

O1-Co1-O3  87.58(9) O1-Co1-O3  88.4(3) O3-Co1-O1  85.44(10) 

O1-Co1-O4  87.27(8) O1-Co1-O4  86.5(3) O3-Co1-N3  83.54(10) 

N1-Co1-N2  85.65(10) N1-Co1-N2  85.7(3) N2-Co1-N1  85.95(12) 

N1-Co1-O3  87.65(9) N1-Co1-O3  87.8(3) N2-Co1-O1  91.32(13) 

O3-Co1-N2  92.21(9) O3-Co1-N2   91.9(3) O1-Co1-N1  93.02(11) 

O4-Co1-N2  91.03(9) O4-Co1-N2   92.5(3) N3-Co1-N1  95.72(11) 

O3-Co1-O4  91.95(8) O3-Co1-O4   90.5(3) O1-Co1-N3  90.64(11) 

 

 

3.3.3. Electronic and electrochemical properties 

3.3.3.1. Calculated electronic structures 

Insight into the nature of the molecular orbitals of complexes 1, 2, 4, and 5 were obtained by 

means of DFT calculations. Complexes 4 and 5 were modeled replacing the t-butyl groups of the 

phenolate rings by methyl groups (4
Me

). In agreement with the 
1
H-NMR data, the orbital 
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occupancies are shown in Figure 3.7 plotted as comparative molecular orbital ladders of 

diamagnetic closed shell singlets of 3d
6
 

LS
Co(III) complexes. The calculated bond lengths are 

consistent with experimental data. An energy difference of 0.6 eV (~14 kcal/mol) becomes 

evident when comparing the highest occupied molecular orbitals (HOMOs) of the electron-

withdrawing chloro-substituted 1 with those of the electron-donating methyl-substituted 4. The 

first four HOMOs, namely HOMO, HOMO-1, HOMO-2, and HOMO-3 are predominantly based 

on the phenolato groups, in good agreement with previous assignments.
7d-e,8,23,24

 Species 1 and 2, 

and species 4 and 5 are respectfully comparable to each other in MO occupancy and orbitals 

energies (Figure 3.7 and Figure 3.8). A noticeable effect of halogen substitution on 1 and 2 is 

the energy lowering of the first three unoccupied orbitals LUMO, LUMO+1, and LUMO+2 

which correspond to the empty π* orbital of the imine, and two empty Co-based orbitals, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. MO ladders and plots for 1 (left) and 4 (right). 
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Figure 3.8. MO ladders and plots for 2 (left) and 5 (right). 

 

3.3.3.2. Effect of ligand substitution and solvents in the electronic spectra 

The electronic spectra of 1-5 were measured in acetonitrile and dichloromethane (Figures 3.9, 

3.10, 3.11) and summarized in Table 3.3. UV-visible spectra were also measured in other 

coordinating solvents (Figure 3.12). The complexes show charge-transfer absorptions between 

400 and 800 nm along with processes below 400 nm, typically associated with ligand-centered 

charge transfer.  

 

 

 

 

 

 

Figure 3.9. UV-Visible spectra of 1– 4 (1.0 × 10
-4

 M; acetonitrile). 
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Figure 3.10. UV-visible spectra of 1-4 ([C] = 1.0 × 10
-4

 M) in dichloromethane. 

 

 

 

 

 

 

Figure 3.11. Comparative UV-visible spectra of complexes 4 and 5 in dichloromethane 

and acetonitrile. 

 

 

 

 

 

 

 

 

Figure 3.12. Comparison of UV-visible spectra for 1 and 4 in different solvents (acetonitrile, 

dichloromethane, dimethyl formamide and pyridine). 
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The two strong but ill-solved bands between 400-500 nm are attributed to a phenolate-to-

azomethine intraligand charge transfer (ILCT, 450 - 475 nm) and a ligand-to-metal charge 

transfer process (LMCT) involving an in-plane pπphenolate  dσ*Co(III) transition
25

 (475 - 500 nm). 

The shoulders seen at lower energy (550-800 nm) are attributed to out-of-plane pπphenolate  

dσ*Co(III)
26

 LMCT processes. A modest variation in the position of the ILCT and in-plane LMCT 

processes can be associated with the electron withdrawing or donating nature of the phenolate-

installed substituents in the order 1 < 2 < 3 < 4. Similarly, the LMCT bands for 1-3 in acetonitrile 

are hypsochromically shifted by 8-16 nm, when compared to dichloromethane, thus indicating 

that acetonitrile replaces the weakly bound methanol molecule in solution. Although changes are 

more subtle for 4 and 5, the ability to replace methanol is relevant for proton-reduction catalysis. 

Table 3.3. UV-Visible spectroscopic data for 1-5 in dichloromethane and acetonitrile. 

Compound 

λ
max

 , nm / (ε, M
-1

.cm
-1

) 

in acetonitrile 

λ
max 

, nm / (ε, M
-1

.cm
-1

) 

in dichloromethane 

1 451 (8034), 475 (7602), 697 (594) 455 (7431), 486 (7323), 712 (565) 

2 453 (8160), 476 (7751), 696 (755) 456 (8077), 486 (7782), 712 (582) 

3 456 (8592), 479 (8053), 697 (796) 457 (8684), 487 (8012), 712 (634) 

4 468 (9011), 492 (8305), 757 (656) 471 (8798), 496 (8174), 759 (958) 

5 466 (9253), 493 (8494), 658 (1167) 470 (9106), 497 (8357), 652 (1304) 

 

Time-dependent DFT methods were used to model and assign the bands observed in 

acetonitrile spectra of 1, 4, and 5 (Figure 3.13a, b, c). The simulated spectrum of 1 indicates a 

lower energy band at 683 nm associated with an aminophenolate-to-Co(III) CT and in good 

agreement with the experimentally observed band at 697 nm. The main CT contribution at higher 

energy originates from amino/iminophenolate to phenyleneimine and amino/imino phenolate-to-
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Co(III) between 390 – 520 nm, in relatively good agreement with the experimentally observed 

processes at 451 to 475 nm. Calculated TD-DFT spectra for 4 and 5 also show similar behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Absorption spectra for in CH3CN.TD-DFT calculated spectra in CH3CN as solvent 

model and experimental spectra in CH3CN. The inset indicates the lowest energy transition. (a) 

Calculated vs experimental for 1 (B3PW91/ 6-311+g(d,p). (b) Calculated vs experimental for 4 

(B3PW91/ 6-311+g(d,p) (c) Calculated vs experimental for 5 (B3PW91/6-311+g(d,p). 

(a) 

(b) 

(c) 
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3.3.3.3. Effect of ligand substitutients on the redox behavior  

Cyclic voltammograms (CV) for 1, 2, 4 and 5 were recorded in acetonitrile using TBAPF6 (0.1 

M) as supporting electrolyte. Compound 3 was measured in N,N’-dimethylformamide due to 

solubility restrictions. Potentials were measured against Ag/AgCl and are reported versus the 

Fc/Fc
+
 redox couple.  Table 3.4. summarizes the electrochemical data and Figure 3.14. (1, 4, 

and 5) and Figures 3.15 (2 and 3) displays the results. Voltammograms taken in 

dichloromethane for 1, 4, and 5 are displayed in Figure 3.16 and data tabulated in Table 3.5, and 

show comparable behavior to those in acetonitrile (Figure 3.17).  

Table 3.4. Cyclic voltammetric data for 1-5 in CH3CN. 

 3
rd

 PhO
-
/PhO

● 

E½, V 

(ΔE, V) |ipc/ipa|  

2
nd

 PhO
-
/PhO

●
  

E½, V 

(ΔE, V) |ipc/ipa| 

1
st
 PhO

-
/PhO

●
  

E½, V 

(ΔE, V) |ipc/ipa| 

Co(III)/Co(II)  

E½,  [Epc; Epa], V  

(ΔE, V) |ipc/ipa| 

 

C=N/C
●
-N

-
 

E½, V 

(ΔE, V) |ipc/ipa| 

1 +1.33 (0.13) |0.82| +1.09 (0.08) |0.95| +0.73 (0.08) |1.00| -0.63 [-0.72; -0.52] 

(~0.20) |1.7| 

spike at Epa= -0.15 

-2.03 (0.06) |1.43| 

2 +1.33 (0.05) +1.06 (0.09) |0.53| +0.70 (0.08) |0.30| -0.68 [-0.80; -0.56] 

(0.22) |1.8| 

-2.06 (0.11) |7.29| 

-2.20 (0.09) |2.53| 

3 -- -- -- spike at Epa= -0.16 E
pc

= -2.07; E
pc

= -

2.25 

4 +0.99 (0.16) |0.82| +0.58 (0.07) |0.98| +0.21 (0.07) |0.97| -0.64 [-0.72; -0.56] 

(0.12) |1.06| 

-2.55 (0.08) |1.09| 

5 +1.01 (0.17) |0.84| +0.65 (0.09) |1.04| +0.27 (0.09) |0.80| -1.33 [-1.46; -1.20] 

(0.26) |2.03| 

spike at Epa= -0.55  

-2.57 (0.11) |1.18| 

3 in DMF 

Compound 1 (Figure 3.14, top) shows three reversible phenolate/phenoxyl processes between 

0.50 and 1.50 VFc/Fc+ while a reversible process at -2.03 V Fc/Fc+ is attributed to the reduction of 

the phenylene-imine moiety.
27

 The process attributed to the cobalt(III)/(II) couple is quasi-

reversible with Epc and Epa respectively at -0.72 and ca. -0.52 VFc/Fc+, corresponding to E1/2 ≈              

-0.63 VFc/Fc+ with |ipc/ipa| = 1.7.
7d,28

 This process is obfuscated by a sharp spike at -0.15 VFc/Fc+ 

associated to an unidentified product. Compound 2, (Figure 3.15a) shows a less reversible 
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profile with three phenolate/phenoxyl processes between 0.70 and 1.50 VFc/Fc+, whereas the 

phenylene-imine process is split in two irreversible waves between -1.80 and -2.50 V. As the 

phenylene-imine moiety can accept 2 electrons, we infer that two electrons are transferred at 

slightly different potentials. We did not pursue this issue. The metal-centered process was quasi-

reversible with Epc = -0.80 and Epa= -0.58 VFc/Fc+ and E1/2 ≈ -0.68 VFc/Fc+.  The CV for 3 was 

taken in DMF is shown in Figure 3.15b over a narrower voltage window in the anodic region 

that prevents further discussion of the phenolate/phenoxyl processes. An irreversible 

cobalt(III)/(II) reduction was observed at Ep,c = -1.04 VFc/Fc+, along with two irreversible 

processes attributed to the phenylene-imine observed with Epc values of -2.07 and -2.25 VFc/Fc+. 

Complex 4 (Figure 3.14, middle) showed three reversible phenolate/phenoxyl processes 

between 0.10 and 1.25 VFc/Fc+ and one reversible phenylene-imine process at -2.55 VFc/Fc+. 

Additionally, contrary to the barely reversible behavior observed for 1-3 the Co(III)/Co(II) redox 

couple observed at -0.64 VFc/Fc+ exhibited excellent reversibility with E = 0.12 and |ipc/ipa| = 

1.06.  
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Figure 3.14. Cyclic voltammograms of 1 (top), 4 (middle), and 5 (bottom) in acetonitrile. 

Conditions: 0.1 M TBAPF6 as supporting electrolyte; Glassy carbon (working), Pt wire (counter) 

and Ag/AgCl (reference); Scan rate: 100 mVs
-1

. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. (a) Cyclic voltammograms of 2 in acetonitrile. (b) Cyclic voltammograms of 3 in 

dimethylformamide. Conditions: 0.1 M TBAPF6 as supporting electrolyte; Glassy carbon 

(working), Pt wire (counter) and Ag/AgCl (reference); Scan rate: 100 mVs
-1

. 
 
 
 

(a) (b) 
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Figure 3.16. Cyclic voltammograms for 1 (top), 4 (middle), and 5 (bottom) in dichloromethane. 

Conditions: 0.1 M TBAPF6 as supporting electrolyte; scan rate: 100 mVs
-1

; Glassy carbon 

(working), platinum wire (counter) and Ag/AgCl (reference) in the three electrode cell. 
 
 

 

 

Table 3.5. Cyclic voltammetric data for 1-5 in CH2Cl2. 
 

 3
rd

 PhO
-
/PhO

● 

E½, V 

(ΔE, V) |ipc/ipa|  

2
nd

 PhO
-
/PhO

●
  

E½, V 

(ΔE, V) |ipc/ipa| 

1
st
 PhO

-
/PhO

●
  

E½, V 

(ΔE, V) |ipc/ipa| 

Co(III)/Co(II)  

E½,  [Epc; Epa], V  

(ΔE, V) |ipc/ipa| 

 

C=N/C
●
-N

-
 

E½, V 

(ΔE, V) |ipc/ipa| 

1 +1.34 (0.10) |0.85| +1.16 (0.08) |0.81| 

 

+0.75 (0.06) |0.87| 

+0.87 (0.07) |0.87| 

 

-0.66 [-0.69; -0.64] 

(0.05) |1.16| 

 

-2.12 (0.04) |1.03| 

2 -- -- -- -- -- 

3 -- -- -- -- -- 

4 +0.96 (0.11) |1.04| +0.61 (0.10) |1.08| 

 

+0.21 (0.10) |1.10| 

 

-0.63 [-0.68; -0.57] 

(0.11) |0.95| 

-2.69 (0.03) |1.00| 

5 +1.01(0.11) |0.65| +0.63(0.10) |0.93| 

 

+0.18(0.11) |0.94|  [Epc: -2.08] 

  

-- 
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Figure 3.17.  Cyclic voltammetry of 1 and 4 in CH2Cl2 and CH3CN. Conditions: [C] = 1 × 10
-4

 

M; 0.1 M TBAPF6 as supporting electrolyte); Glassy carbon (working), Pt wire (counter) and 

Ag/AgCl (reference); Scan rate: 100
 
mVs

-1
.
 

 
 

The quasi-reversible behavior observed for 1-3 is associated with the reorganizational 

energy barrier for the Co(II)/Co(III) couple.
29

 The Epc values for the Co(III)/(II) couple in 1 and 

4 vary by ~0.72 V, whereas the imine based process (2
nd

 reduction) shifted to more negative 
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potentials by 0.5 V. This variation is attributed to electronic effects of the different substituents 

attached to the imino-phenolate ring, and the more electronegative the substituent, the less 

electron density will be centered in the imine unit, resulting in less negative reduction potentials. 

For 1 —containing electron-withdrawing -Cl substituents— the lowest reduction potential for the 

imine process is observed. For the oxidative couples, the electrochemical potentials for the 

phenolates shifted to less positive values when substitution changes from the more electron-

withdrawing chloro to the more donating tert-butyl group. Higher electron density upon the 

phenolate rings facilitates electrochemical oxidation and so, potentials tend to be less positive 

with a ~ 0.5 VFc/Fc+ shift from 1 to 4.  The pyridine-coordinated complex 5 (Figure 3.14, 

bottom) showed the typical three phenolate-based processes in both dichloromethane and 

acetonitrile between 0.15 and 1.01 VFc/Fc+, thus closely resembling the potentials observed for 4. 

On the other hand, a marked shift of the cobalt-based potential has been observed for 5, when 

compared to 4. The Co(III)/Co(II) potential shifted from -0.64 in 4 to -1.33 VFc/Fc+ in 5 in 

acetonitrile whereas in dichloromethane it shifted from -0.63 in 4 to -2.08 VFc/Fc+ in 5, allowing 

us to postulate that reduction of the metal in 5 is considerably less favorable than in 4. The 

potentials of 1-5 were recorded five times using different stock solutions to confirm 

reproducibility of the data. 

Redox potentials were calculated via DFT methods and showed comparable values to the 

experimental data. In order to confirm the redox loci observed, we have evaluated the frontier 

molecular orbitals (MOs) for selected systems. These MOs are directly related to the reactivity of 

complexes and have proven useful in comparing the relevant redox sequences between species 1 

and 4. In order to make calculations more affordable, we modeled the tert-butyl substituents in 4 

using methyl groups. All five electrochemical processes were probed and are summarized in 
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Figure 3.18a. Spin density plots resulting from reduction, namely [CoL]
-
, [CoL]

2-
), as well as 

oxidation, namely [CoL], [CoL]
+
 [CoL]

2+
 and [CoL]

3+
 were obtained. Interestingly, the second 

phenolate-based oxidation, [CoL]
2+

, occurs at the amino-phenolate moiety for the 4
CH3 

(Figure 

3.18b), whereas for the chloro-substituted 1 this oxidation originates from the imino-phenolate 

(Figure 3.18a). An observed extended conjugation for 1 and other halogeno-substituted 

complexes is most likely the reason behind this phenomenon. The redox sequence for 5 is shown 

in Figure 3.18c. 

 

Figure 3.18. Spin density plots for redox processes in (a) 1, (b) 4, and (c) 5 (top to bottom). 

(c) 

(a) 

(b) 
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The first reduction yields spin density on the cobalt center, consistent with a high spin Co(II) 

while the second reduction is solely based on the imine moiety with most of the added electron 

being shared between the carbon and nitrogen atoms. Upon the addition of this second electron, 

we observed a significant bond length increase of 0.06 Å in the C=N bond. This is consistent 

with our previous assignment of this reduction as exclusively ligand-based. As reduction 

processes are relevant for proton reduction catalysis, usual attributions include the 

transformations Co(III)  Co(II)  Co(I). For species 1-5 we did not observe the Co(II)/Co(I) 

couple, instead we observed a ligand-based reduction that follows the Co(III)/Co(II) couple.  

Better understanding of the redox processes observed for 1-4 was achieved via 

spectropotentiostatic experiments in acetonitrile (or dimethylformamide for 3) using TBAPF6 as 

supporting electrolyte. When the potential was fixed in -1.40 VFc/Fc+ spectral changes in the 

visible region were observed as shown in Figure 3.19. The LMCT absorption bands between 

450 and 800 nm decrease, in agreement with the proposed Co(III)/Co(II) redox pair. Isosbestic 

points were observed at ca. 430 - 440 nm reflecting a decrease in the LMCT bands at 475 - 500 

nm, while new absorption bands appeared at 420 - 440 nm for all complexes. The disappearance 

of the LMCT bands upon reduction suggests these new bands do not require the involvement of 

the metal center, thus supporting the TD-DFT assignment of intraligand charge transfer (πphenolate 

→ π*imine).  
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Figure 3.19. (a) Spectral changes upon electrochemical reduction of the Co(III)/Co(II) process in 

1, 2 and 4 in acetonitrile and 3 in DMF. The applied potential was –1.40 VFc/Fc+ over a period of 

10 min.; (b) Spectral changes upon second reduction of 1 in acetonitrile. The applied potential 

was –2.40 VFc/Fc+ and the graph represents the behavior after 10 min. TBAPF6 (0.1 M) was used 

as supporting electrolyte. 

 

When a fixed potential was applied at -2.40 VFc/Fc+ (for 1 – 3) targeting the azomethine process, 

the initial response within ca. 10 min was similar to that shown in Figure 3.19a. However after 

the full reduction of the cobalt(III) center, the ILCT absorption gradually starts to decrease 

(Figure 3.19b, Figure 3.20). This is indicative that the azomethine moiety becomes reduced.  
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Figure 3.20. Spectral changes upon electrochemical reduction of complexes 1, 2 and 4 in 

acetonitrile and 3 in N,N’-dimethylformamide. The applied potential was –2.40 V vs. Fc
+
/Fc over 

a period of 10 minutes and after 10 minutes (inset – for 1 - 3). TBAPF6 (0.1 M) was used as 

supporting electrolyte. 

 

As for oxidations, when the potential was fixed to 0.85 VFc/Fc+ for 1-3 (and 0.30 VFc/Fc+ for 4) a 

band appeared around 1000 nm, which has been ascribed to a phenolate to phenoxyl ILCT 

process
12,30

 (Figure 3.21). This is in good agreement with our previous observations in similar 

systems.
8
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Figure 3.21. Spectral changes upon electrochemical oxidation of 1, 2 and 4 in acetonitrile and 3 

in N, N’-dimethylformamide. The applied potential was 0.85 V for 1-3 and 0.30 V for 4 vs. 

Fc
+
/Fc over a period of 10 minutes. TBAPF6 (0.1 M) was used as supporting electrolyte. 

 

TD-DFT calculations were used to model the experimentally observed changes in the visible 

spectrum of 1, both upon cobalt(III) reduction and phenolate oxidation (Figure 3.22, 3.23). The 

first reduction results in disappearance of the LMCT process whereas the ILCT band remains 

intact. Similarly, oxidation results in a peak around 600-800 nm, along with another band at very 
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low energy (~1500 nm). Both observations are in excellent agreement with the experimental 

findings.   

 

Figure 3.22. Computed electronic spectra for 1 in the parent state after 1
st
 reduction (top) and 

after 1
st
 oxidation (bottom). 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. TD-DFT calculated UV-visible spectra for spectroelectrochemical changes. 
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3.3.3.4. Effect of hydrogen bonding in the redox behavior 

Analysis of the molecular structures suggests the presence of an H-bond interaction for 1, 2, and 

4 between the coordinated methanol and its nearest phenolato oxygen atom at ca. 2.15 Å. This 

H-bond is not possible for the pyridine-coordinated complex 5 (Figure 3.24) and likely 

contributes to stabilize the reduced Co(II) species in the former complexes.  

 

 

 

 

 

 

Figure 3.24. Presence (1, 4) and absence (5) of H-bonding interactions in cobalt(III) complexes. 

Therefore, we used DFT methods to interrogate how this H-bond can stabilize the Co(III)/Co(II) 

couple in 1, 2, and 4, but not in 5 where the process potential is also significantly more negative. 

Our calculations favor a high-spin Co(II) species (S = 3/2) over its low-spin (S = 1/2) congener 

by 13.2 kcal/mol, implying that a high reorganizational barrier associated with the 
LS

3d
6
  

HS
3d

7
 

process must be overcome in order to attain redox reversibility. Similarly, the results for the 

reduced Co(II) species in 1 indicate that the methanol bond length elongates drastically from 

2.01 to 3.60 Å, to the point where it is mainly H-bonded to the phenolate than coordinated to the 

cobalt center (Figure 3.25) whereas for 4 this bondlength reaches ~2.6 Å.  
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Figure 3.25. Geometrical changes upon reduction (left) and superimposition of various  

oxidation states for complex 1 (right). 
 

This secondary interaction provides a pathway for the methanol to remain nearby the complex 

instead of freely roaming in solution. The H-bonded phenolate has its charge “shielded” by the H 

atom, resulting in a reduced net charge of less than 3-, that accommodates the 
HS

Co(II) ion and 

contributes to the reversibility of the process, as seen that 4 is more reversible than 1. To have a 

better insight, calculations were performed to evaluate the enthalpy change upon the dissociation 

of both methanol and pyridine for the divalent (reduced) complex.  

                                             [Co(II)LX]
-
  [Co(II)L]

-
 + X  (∆E)   Eq.1. 

For complex 1 and 4 we calculate an enthalpy change of 0.05 and 4.0 kcal/mol respectably, 

whereas for 5 we observe a negative -1.8 kcal/mol. The numbers, even though small, show that 

the methanol interacts more strongly with 4 than for 1. It is noteworthy that this enthalpy 

includes by definition, all possible interactions of the methanol, namely its interactions with the 

ligand and with the metal complex. It is expected that the stronger the H-bonding to the ligand, 

the harder it will be to completely remove the methanol.  As previously mentioned, the presence 

(1, 4) and absence (5) of H-bonding interactions play crucial role in determining the nature of 

redox behavior of cobalt center. Binding energy of methanol with cobalt(III) for 4 (t-butyl 
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substituted) is much stronger than the binding energy for 1 (chloro substitued) (Table 3.6) which 

will have to lessen the reorganization of the coordination environment of 4 upon reduction with 

respect to 1. Less environmental changes can lead to better reversibility such as in 4. It has also 

been known that a di-tert-butyl phenol oxygen is more electron dense than a di-chloro-substitued 

phenol,
31

 thus it results in a stronger H-bonding of di-tert-butyl phenol forming with the 

methanol hydrogen than the di-chloro-phenol which can help explain the binding energy and 

reversibility difference. As this effect is not available in 5, the resulting Co(III)/Co(II) couple is 

irreversible and more difficult to reduce. 

Table 3.6. Binding energy of methanol with cobalt(III) for 1 and 4 and of pyridine for 5. 

 

 
 
 
 
 
 
 
 
 

3.3.4. Reactivity studies 

3.3.4.1. Behavior as electron acceptors 

As phenolates stabilize the trivalent cobalt in complexes 1-4, conversion of Co(III) into Co(II) is 

a fundamental step relevant for catalysis. In order to understand the electron acceptance ability of 

1-4, chemical reduction tests were carried out using excess ascorbic acid as the reductant. In 

contrary with electrochemical reduction which is slow and incomplete due to the operation for 

shorter time period, chemical reduction is generally more complete and quick. Spontaneous 

electron transfer reaction from ascorbic acid to 1-4 is assured by the electrochemical potentials 

observed for the Co(III)/Co(II) couple,
32

 and the experiments were performed in CH3CN/H2O 

Co(II) 

non-Vertical 

Enthalpy 

(1) -Cl 0.05 

(4) -CH3 4.0 

(5) -Py -1.8 

  

 (Kcal/mol, 

ub3pw91/6-

311+g(d,p)) 
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(90:10% v/v). Results were evaluated spectrophotometrically following the disappearance of the 

phenolate-to-cobalt(III) LMCT processes in the parent compounds at room temperature (Figure 

3.26a, Figure 3.27). Plots of complex concentrations versus time were obtained and fitted using 

a first order exponential decaying equation (Figure 3.28) and linearized using a first order rate 

equation (Figure 3.26b). From the linearized data, the rate constants (kobs) and half-life values 

(t½) were obtained for the complexes 1 – 4 and are listed in Table 3.7. 

 

 

 

Figure 3.26. (a) Time-dependent UV-visible spectral changes in acetonitrile/water (90:10% v/v) 

for complex 1; (b) Chemical reduction tests for 1 – 4 with the reducing agent ascorbic acid. 

Conditions: [C]final = 1.80 × 10
-4

 M, [AA] = 2.00 × 10
-2

 M and pH ~ 3.0. 
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Figure 3.27. Time-tracked UV-visible spectral change in acetonitrile/water (90:10% v/v) for the 

complexes 1 – 4. Conditions: [C]final = 1.80 × 10
-4

 M, [AA] = 2.00 × 10
-2

 M and pH ~ 3.0. 

 

 

 

 

 

 

 

 

Figure 3.28. Chemical reduction tests for the complexes 1 – 4 towards the reductant (ascorbic 

acid). [Complex] (M) versus time (s) plot fitted as a first order exponential decaying equation. 
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The electronic influence of the substituents present on the phenolate pendant arms was clearly 

observed on the kinetic parameters. Compound 1 presented a rate constant of 1.0 x 10
-3

 s
-1

 

whereas compound 4 showed a considerably slower rate of 5.3 x 10
-5

 s
-1

. Based on these results 

we conclude that the rate constants (kobs) tend to decrease when electron-withdrawing groups 

such as chloro are replaced by electron-donating groups such as 
t
butyl.  Half-lives (t½) for 1 - 4 

were also calculated. For these electron transfer reactions, the t½ values follow the same trend 

observed for the rate constants. The results show clearly the time-wise efficiency of the complex 

1, where in 12 minutes 50% of that species had been reduced to its Co(II) counterpart. For 

complex 4, on the other hand, the t½ value is approximately 20-fold lower. This behavior can be 

explained in terms of electron density over the metallic center: electron deficiency is triggered on 

the metal when electron-withdrawing groups are present, making the cobalt(III) centers more 

positive and electron acceptance easier.  Overall, the trend can be summarized as follows: 1 (-Cl) 

> 2 (-Br) > 3 (-I) > 4 (
t
Bu). 

Table 3.7. Kinetic parameters obtained for the chemical reduction reaction between complexes 1 

– 4 and ascorbic acid.  

Parameter 
Complexes 

1 2 3 4 

kobs (s
-1

) 1.0 × 10
-3

 4.4 × 10
-4

 1.3 × 10
-4

 5.3 × 10
-5

 

t½ (min) 12 26 89 220 

Acetonitrile/water (90:10% v/v); [C]final = 1.80 × 10
-4

 M, [AA] = 2.00 × 10
-2

 M, pH ~ 3.0 at 

room temperature.  

3.3.4.2. Behavior as proton-reduction catalysts 

We tested the activity of compounds 1-4 towards proton reduction in presence of weak acid such 

as acetic acid (HOAc). We focused our attention on complexes 1 and 4 due to their inherently 

different redox and electronic natures. We measured the catalytic activity in presence of the very 

weak acid HOAc, which shows the catalytic wave in close vicinity to the ligand-based imine 
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process (Figure 3.29a). Overpotential was calculated to be 0.60 V and 0.90 V for 1 and 4, 

respectively. The chloro-substituted 1 generated H2 at lower overpotentials than those observed 

for the t-butyl substituted 4. This is associated with the presence of the electron-withdrawing 

chloro substituents. Comparison of cyclic voltammogram between 1 with the blank in the 

presence of ten equivalent of acetic acid established the hydrogen generation in the presence of 1 

at lower overpotential than the blank (Figure 3.29b). Hydrogen generation was confirmed from 

bulk-electrolysis measurements for 1 at an applied potential of -2.20 VFc/Fc+, and an associated 

turnover number (TON) of 10.8 was determined after three hours with a Faradaic efficiency of 

85% using Hg-pool as working, Ag/AgCl as reference, and a platinum wire as the auxiliary 

electrode. Charge consumption over time is much higher with complex 1 than that with the blank 

solution (Figure 3.29c), validating 1 as the catalyst. Furthermore, the blank generates only 40 

μmol of hydrogen in three hours during bulk-electrolysis at -2.2 VFc/Fc+, wheras the catalyst 

generates 472 μmol of hydrogen in three hours. Each set of experiments was repeated in 

triplicate using fresh solutions. During the controlled potential experiment, no deposition of any 

solids was observed on the electrode surface. Moreover, analysis of the solution after bulk 

electrolysis in the presence of HOAc suggested the presence of Co
II
-species in similar ligand 

environment, as shown by the UV-visible spectra (Figure 3.29d), which is very similar to the 

Co(II) spectra obtained during spectroelectrochemistry. Similar bulk-electrolysis measurements 

were not possible for 4 due to its high overpotential. Appearance of the catalytic peak close to 

the imine-based process suggested the doubly reduced state as the catalytic species. On the other 

hand, protonation of the phenolates in these conditions was ruled out due to unchanged UV-

visible spectra for either 1 or 4 upon addition of much stronger nitric acid to acetonitrile.  
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Figure 3.29. (a) Electrocatalytic activity of complex 1 towards proton reduction in presence of 

acetic acid. (b) Comparison of cyclic voltammogram between 1 and blank in the presence of 10 

equivalents of acetic acid. For a and b: Glassy C: WE; Pt-wire: AE; Ag/AgCl: RE (c) Charge 

versus time plot over 3 h during bulk-electrolysis at -2.2 VFc/Fc+ of 1 versus blank in the presence 

of acetic acid. (d) UV-Visible spectra of the solution before and after bulk-electrolysis at -1.8 V 

versus Ag/AgCl in the presence of HOAc (For c, d: Hg-pool: WE; Pt-coil: AE; Ag/AgCl: RE). 

(a) 

(b) 

(c) 

(d) 
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3.4. Conclusions 

In this study we investigated the effect of phenolate substituents on the redox and electronic 

processes of a series of cobalt(III) complexes. These complexes showed the expected 

Co(III)/Co(II) couple along with multiple ligand-centered redox processes, and the nature of the 

substituent modulates the potentials by which ligand-based reduction takes place. The visible 

region of the spectrum dominated by phenolate-to-cobalt(III) and phenolate-to-phenyleneimine 

charge transfer bands. Upon reduction of the metal center, the LMCT disappears, evidencing the 

LLCT. We also showed that adventitious hydrogen-bonding enhanced the reversibility of the 

metal-based process. The chloro-substituted complex showed promising electron accepting 

ability. Kinetic plots for chemical reduction favored a relative order as -Cl > -Br > -I > -t-Bu. 

The chloro and t-butyl substituted species also showed potential as catalysts for proton reduction 

in acidic media. Again the chloro-substituted species yielded lower overpotentials than its t-Bu 

counterpart. These overpotentials are considerably negative, therefore, limiting practical use of 

this framework for efficient proton reduction. Nonetheless they support the notion that 

incorporation of strong electron-withdrawing groups to the ligand framework may lead to 

optimized catalytic properties. These efforts are currently under development in our labs.  
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CHAPTER 4 

EVALUATION OF THE MECHANISTIC AND CATALYTIC BEHAVIOR OF Co
III

-

OXIMES TOWARDS HYDROGEN GENERATION 

 

4.1. Introduction 

We are interested in investigating a new series of complexes of polydentate ligands consisting of 

an acceptor moiety, in order to decrease the relatively high overpotential observed for the 

phenolato cobalt complexes described in the previous section. The advantage of using an 

acceptor moiety lies in its ability to stabilize a lower oxidation state of the metal which is 

otherwise absent in present of a π-donor ligand like phenolate.  

         We synthesized a tetradentate oxime ligand which can hold Co
III

 in the equatorial planes 

while allowing us to vary the axial ligands around it. First, we synthesized several complexes 

with homoaxial ligands. The axial ligands were systematically varied from negatively charged 

azide (1), thiocyanide (2) to neutral donor such as 
4-tBu

pyridine (3) (Scheme 4.1a). We 

investigated the successive redox, electronic, and catalytic behaviors of these complexes towards 

proton reduction. The parent Co
III

-complex is expected to undergo two successive one-electron 

reduction processes to yield a catalytically active Co
I
-intermediate able to take up a proton in 

acidic media, and subsequently generate the Co
III

-hydride species. In order to enable increased 

effectiveness of the catalyst design, it is necessary to gain an accurate understanding of the 

coordination environment and electronic properties of the different redox species. Thus, 

furthering a collaboration on cobalt systems, we investigate three new heteroaxially substituted 

catalytic species [Co
III

(
4-tBu

py)(HL
oxime

)(Cl)]PF6 (4), [Co
III

(
4-Pyr

py)(HL
oxime

)(Cl)]PF6 (5), and 

[Co
III

(
4-Bz

py)(HL
oxime

)(Cl)]PF6 (6) (Scheme 4.1b) based on oxime as the framework ligand with 

chloride and 4-substitued pyridine as the axial ligands. The main difference of these three species 

is the change of pyridine substituents in the axial position from mildly electron-donating t-butyl, 
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to strongly donating pyrrolidine, to electron-withdrawing benzoyl. Using experimental and 

theoretical methods, we examined the successive structural, electronic, and redox variations of 

these species associated with proton reduction in acidic media. Catalytic mechanism for proton 

reduction was studied by means of experimental and theoretical tools.  

     We also describe the synthetic efforts towards designing photocatalytic assemblies containing 

the heterometallic [Ru
II
Co

III
] core, where Ru

II
 is the photosensitizer and Co

III
 is the catalytic site. 

The main motivation behind this work is to use the photosensitizer as an electron donor rather 

than an electrode. When the ruthenium center is excited with light of appropriate wavelength, 

one electron goes to the excited state, and can be transferred to the cobalt center.
1
 Therefore, the 

cobalt center can be reduced and the active species will be generated via this electron transfer 

process.
1
 The facility of using a heterometallic [Ru

II
Co

III
] complex rather than using two 

independent complexes of ruthenium and cobalt centers lies in the ease of intramolecular 

electron transfer rather than the intermolecular one. 

       In this study, we will describe synthetic, electronic, and catalytic implications of 

photocatalytic assemblies of [Ru
II
Co

III
] (Ru

II
 as photo-sensitizer and Co

III
 as catalytic site) for 

proton reduction. Generation of photocatalyst requires extensive investigation of (a) reactivity of 

photosensitizer, (b) excited state lifetime, (c) electron transfer, (d) reduction of the catalytic site, 

and (e) activity of active species towards proton, thus making the whole process fairly 

complicated.
  

      
These species were obtained using the oxime ligand which can act as a bridging unit, and can 

hold two metals in the close proximity. Therefore, we synthesized and tested proton reduction 

activity of water coordinated cobalt oxime complex (7), and a [Ru(bpy)2]
+
 unit was incorporated 

with this complex to generate a heterobimetallic [Ru
II
Co

III
] complex (8) (Scheme 4.2). To 
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synthesize heterometallic complex [Ru
II
Co

III
] (8), a two-step synthetic procedure was executed, 

and has been thoroughly studied in terms of redox, electronic, catalytic, and electron-transfer 

behaviors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.1. (a) Homoaxially (1-3) and (b) heteroaxially (4-6) substituted Co(III) complexes.  

 

 

 

 

 

Scheme 4.2. Homoaxial water coordinated Co(III) complex and its [Ru
II
Co

III
] analog. 

(a) 

(b) 

1 2 3 

4 5 6 
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4.2. Experimental 

4.2.1. X-ray structural determination 

For 2, single crystals of C13H19N6O2S2Co was obtained via slow evaporation from 

methanol/water (2:1) mixture. A suitable crystal was selected and data was collected on a Bruker 

APEX-II Kappa geometry diffractometer with Mo radiation and a graphite monochromator using 

a Bruker CCD (charge coupled device) based diffractometer equipped with an Oxford 

Cryostream low-temperature apparatus. The data was measured at a temperature of 100 K. The 

structures were solved by the direct method using the SHELXS-97 program which is part of 

APEX II
2a

 and refined by least squares method, SHELXL
2b

, which is incorporated in OLEX2
2c

 

All hydrogen atoms were placed at calculated positions. The crystal structure of 2 includes one 

molecule in the unit cell with the SCN
-
 axial ligand being coordinated via the sulfur. The 

nitrogen N1 on one of the thiocyanide ligands was disordered as such it had to be refined 

isotropically and partial occupancy had to be assigned. 

An orange single crystal for 3 was mounted. A Bruker CCD diffractometer was used to collect 

all the data. Phi and omega scans (0.5°/frame in the period of 20 s) were performed to measure 

the data. The program COSMO
2d 

determined the sum of the images whereas completeness and 

redundancy was found to be 100% out to 0.83 Å and 4.0, respectively. APEX II software
2a

 was 

used to determine all the parameters related to the unit cell and SAINT was used for refinement. 

SAINT software
2e

 was used for the reduction of data. SADABS
2f 

was used to perform absorption 

and scaling related adjustments. SHELXS-97 program was implemented to solve the crystal 

structures and further refined by the method of least squares on both F
2
 and SHELXL- 97 

(SHELXTL-PC V 6.10).
2g

  This structure of 3 was measured and solved by Dr. Richard Staples 

from MSU and displayed P21/n (# 14) space group. Anisotropic corrections for all atoms (non-
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hydrogen) were executed. Geometrical techniques were used to calculate hydrogen atom (except 

the Hs close to O1 and O2) and further refined by models based on riding method. No sign of 

decomposition was observed during the mounting, collection, and solving processes. All the 

structural representation was shown at an ellipsoidal probability of 50%. 

           An orange single crystal for 4 was mounted. A Bruker CCD diffractometer was used to 

collect all the data. Phi and omega scans (0.5°/frame in the period of 20 s) were performed to 

measure the data. The program COSMO
2h 

determined the sum of the images whereas 

completeness and redundancy was found to be 100% out to 0.83 Å and 4.0, respectively. APEX 

II software
2i

 was used to determine all the parameters related to the unit cell and SAINT was 

used for refinement. SAINT software
2j

 was used for the reduction of the data. SADABS
2f 

was 

used to perform absorption and scaling related adjustments. SHELXS-97 program was 

implemented to solve the crystal structures and further refined by the method of least squares on 

both F
2
 and SHELXL- 97 (SHELXTL-PC V 6.10).

2g 
This structure of 4 was measured and 

solved by Dr. Richard Staples from MSU and displayed I 4  (# 82) space group. Anisotropic 

corrections for all atoms (non-hydrogen) were executed. Geometrical techniques were used to 

calculate hydrogen atom and further refined by models based on riding method. The void lattice 

contains solvent octane which is most likely present due to crystallization. The remodeling of 

these solvents as dichloromethane did not generate a model which is chemically logical. The 

SQUEEZE
2k

 function which is related to PLATON
2l

 was employed to reduce or subtract any 

influence of the density of electron of void region from the data of intensity. 625 Å
3 

was found to 

be the total volume of the solvent, with 80 electron count, which suggests the presence of CH2Cl2 

(2 of those) in the cell. Some important parameters such as the density and F(000) and were 

gathered after considering two molecules of CH2Cl2/cell or one molecule of CH2Cl2/complex. 
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The PLATON program was used to refine the new files with considering the presence of CH2Cl2. 

No sign of decomposition was observed during the mounting, collection, and solving processes. 

All the structural representation was shown at an ellipsoidal probability of 50%. 

A yellow-plate single crystal for 6 was mounted. A Bruker CCD diffractometer was used to 

collect all the data. Phi and omega scans (0.5°/frame in the period of 20 s) were performed to 

measure the data. The program COSMO
2d 

determined the sum of the images whereas 

completeness and redundancy was found to be 100% out to 0.83 Å and 4.0, respectively. APEX 

II software
2a

 was used to determine all the parameters related to the unit cell and SAINT was 

used for refinement. SAINT software
2e

 was used for the reduction of the data. SADABS
2f 

was 

used to perform absorption and scaling related adjustments. SHELXS-97 program was 

implemented to solve the crystal structures and further refined by the method of least squares on 

both F
2
 and SHELXL- 97 (SHELXTL-PC V 6.10)

2g
 in combination with OLEX2.

2c 
This 

structure of 6 was measured and solved by Dr. Richard Staples from MSU and displayed P21/c (# 

14) space group. Anisotropic corrections for all atoms (non-hydrogen) were executed. 

Geometrical techniques were used to calculate hydrogen atom and further refined by models 

based on riding method. No sign of decomposition was observed during the mounting, 

collection, and solving processes. All the structural representation was shown at an ellipsoidal 

probability of 50%. 
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Table 4.1. Crystal data for complexes 2, 3, 4, and 6. 

 

4.2.2. Computational methods 

All the calculations were performed with a development version of Gaussian,
3a

 using B3PW91
3b-

d
 functional with double-zeta SDD basis set on cobalt and D95

3e-f 
basis on the other atoms. All 

optimized structures were confirmed as minima by analyzing the harmonic vibrational 

frequencies. Solvation effects (in acetonitrile) were estimated using the IEF polarizable 

continuum model (PCM)
3g-j

 and were included during structure optimization. Single-point 

energies were reevaluated with triple-zeta TZVP basis
3k 

on the metal atom and 6-311++G(d,p) 

 2 3 4 6 

Empirical formula C13H19CoN6O2S2  C30H49CoF12N6O3P2 C21H34Cl3CoF6N5O2P C23H28ClCoF6N5O3P 

Formula weight 414.39 890.62 698.78 661.85 

Temperature (K) 100.1 173(2) 173(2) 173.15 

Wavelength (Å) 0.71073 0.71073 0.71073 0.71073 

Crystal system, 

space group 
Monoclinic, P21/c Monoclinic, P21/n Tetragonal, I -4 Monoclinic, P21/c 

a (Å) 14.8641(9) 12.5242(14) 28.715(4) 6.9686(4) 

b (Å) 7.2786(4) 16.7919(19) 28.715(4) 22.9724(13) 

c (Å) 16.0779(9) 18.462(2) 7.0017(9) 17.7667(12) 

α (º) 90.00 90.00 90 90 

β (º) 94.887(3) 91.4660 90 96.4950(10) 

γ (º) 90.00 90.00 90 90 

Volume (Å
3
) 1733.14(17) 3881.4(8) 5773.5(13) 2825.9(3) 

Z 4 4 8 4 

Calculated density 

(Mg/m
3
) 

1.588 1.524 1.608 1.556 

Absorption 

coefficient (mm
-1

) 
1.250 0.622 0.996 0.833 

F (000) 856.0 1840 2864 1352 

R(F) (%) 5.15 5.79 3.55 5.18 

Rw(F) (%) 7.00 8.27 3.85 7.88 
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basis
3l

 on the other atoms in presence of the continuum solvation model. The free energies were 

calculated using the triple-zeta SCF energy while the zero-point energy and thermal corrections 

were included from the double-zeta calculations. The standard states of 1 M concentration were 

considered for all the reactants and products for calculating the free energies of reactions. Low-

spin configurations were found to be lower in energy for all the species. The wave functions of 

the optimized structures were tested for SCF stability.
3m-o

 Isosurface plots were visualized using 

Gauss View.
3p

 The calculation of the reduction potentials of the complexes included zero-point 

energy and thermal corrections and standard thermodynamic equation ∆G = -nFE was used. The 

calculated potentials were referenced to a value of E1/2 = 4.678 V for the ferrocene/ferrocenium 

couple calculated under our level of theory.  

 

4.2.3. Catalytic activity 

Proton reduction electrocatalysis was tested for 1-8 via cyclic voltammetry in presence of 

trifluoroacetic acid (TFA, pKa: 12.7 in CH3CN) with tetra-butyl ammonium tetrafluoroborate 

(TBABF4) as supporting electrolyte. For bulk electrolysis, the main chamber was filled with an 

electrolyte solution and proton source (TBABF4: 1.317 g; TFA: 0.456 g [4 mmol], 20 mL 

acetonitrile) and the glass-fitted chamber was filled with another electrolyte solution (TBABF4: 

0.329 g; 5 mL acetonitrile). Bulk electrolysis was conducted with catalyst (0.04 mmol) in 

acetonitrile (CH3CN) for 180 minutes at -1.0 VAg/AgCl and the head space gas (100 μL) was 

injected into the GC to record the amount of dihydrogen produced. After the background 

subtraction, the turnover number was calculated as the ratio of the moles of dihydrogen produced 

over the moles of catalyst used. Faradaic efficiency was calculated from the gas chromatography 

measurements.  
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4.2.4. Synthetic procedures 

Synthesis of the ligand, H2L
oxime

: The tetradentate ligand, H2L
oxime

, was synthesized by following 

a standard literature procedure.
4
  

Synthesis of the precursor complex [Co
III

(HL
oxime

)Cl2]: This synthesis was performed by 

following a literature procedure of the reaction of ligand, H2L
oxime

, with CoCl2.6H2O in 

acetone/water (9:1) mixture.
5  

          [Co
III

(HL
oxime

)(N3)2] (1). [Co
III

(HL
oxime

)(N3)2] was obtained by following a literature 

procedure.
6,7 

Yield: 80 %. IR (KBr, cm
-1

) 3436 (w) (OH); 2965 (w), 2935 (w), (aliphatic CH); 

2021 (s), 2003 (s), 1941 (m) (N3
-
); 1620(m), 1528 (m) (C=N); 1430 (w) (C=C). 

1
H-NMR 

[400MHz, CD3CN, 300K] δ/ppm = 2.228 [m, 2H (CH2)]; 2.522 [s, 6H (CH3)]; 2.623 [s, 6H 

(CH3)]; 3.928 [t, 4H (CH2)]. ESI pos. in MeOH: m/z = 421.0668 for [Co
III

(HL
oxime

)(N3)2] + K
+
. 

Anal. Calcd for C11H19CoN10O2: C: 34.56; H: 5.01; N: 36.64; Found: C: 34.57; H: 4.96; N: 

36.41.
 

         [Co
III

(HL
oxime

)(SCN)2] (2). 0.5H2O. [Co
III

(HL
oxime

)(SCN)2] was obtained by following a 

literature procedure.
7
 X-ray quality crystals were obtained after recrystalization from 

methanol/water (2:1) mixture. Yield: 85 %. IR (KBr, cm
-1

) 3441 (w) (OH); 2958 (w), 2935 (w) 

(aliphatic CH); 2103 (s), 2013 (w) (SCN
-
); 1621(m), 1511 (m) (C=N); 1427 (w) (C=C). 

1
H-NMR 

[400MHz, CD3CN, 300K] δ/ppm = 2.398 [m, 2H (CH2)]; 2.530 [s, 6H (CH3)]; 2.623 [s, 6H 

(CH3)]; 3.970 [t, 4H (CH2)]. ESI pos. in MeOH: m/z = 437.0234 for [Co
III

(HL
oxime

)(SCN)2] + 

Na
+
. Anal. Calcd for C13H20CoN6O2.5S2: C: 36.88; H: 4.76; N: 19.85; Found: C: 37.13; H: 4.47; 

N: 19.80. 
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           [Co
III

(HL
oxime

)(
4-tBu

py)2](PF6)2 (3). [Co
III

(HL
oxime

)Br2] was synthesized from 

[Co
III

(HL
oxime

)Cl2] by following literature procedure.
7,8

 [Co
III

(HL
oxime

)Br2] (1 mmol, 0.458 g) 

was dissolved in 20 mL methanol. AgNO3 (2 mmol, 0.34 g) in 10 mL of methanol was added to 

the methanol solution of [Co
III

(HL
oxime

)Br2]. The solution was stirred for 2 hours and the greyish 

white precipitate of AgBr was removed upon filtration. Then
 4-tBu

pyridine (2 mmol, 0.27 g) in 5 

mL of methanol was added to the solution followed by KPF6 (3.4 mmol, 0.6256 g) in 10 mL of 

water. The reaction mixture was stirred for 2 hours and then, rotary-evaporated to 10 mL. This 

solution was kept for 3-4 days and brownish-yellow precipitate was generated. X-ray quality 

crystals were obtained after recrystalization from methanol/water (2:1) mixture. Yield: 80 %. IR 

(KBr, cm
-1

) 3671 (w) (OH); 3246 (w), 3149 (w), 3106 (w) (Aromatic-CH); 2971 (s), 2911 (m), 

2875 (w) (t-butyl and other aliphatic CH); 1621 (s), 1508 (m) (C=N); 1436 (m) (C=C); 822 (s) 

(PF6
-
). 

1
H-NMR [400MHz, CD3CN, 300K] δ/ppm = 1.278 [s, 18H (t-butyl)]; 2.458 [m, 2H 

(CH2)]; 2.556 [s, 6H (CH3)]; 2.692 [s, 6H (CH3)]; 4.262 [t, 4H (CH2)]; 7.411 [s, 8H (aryl)]. ESI 

pos. in MeOH: m/z = 713.2578 for [Co
III

(HL
oxime

)(
4-tBu

py)2] + PF6
-
. Anal. Calcd for 

C29H45CoF12N6O2P2: C: 40.57; H: 5.28; N: 9.79; Found: C: 40.49; H: 5.19; N: 9.91. 

            [Co
III

(
4-tBu

py)(HL
oxime

)(Cl)]PF6 (4). [Co
III

(HL
oxime

)Cl2] (1mmol, 0.369 g) was dissolved in 

20 mL methanol. KPF6 (1.7 mmol, 0.3128 g) in 5 mL water was added to the solution followed 

by 
4-tBu

pyridine (1 mmol, 0.135  g) in 5 mL of methanol. The reaction mixture was stirred for 2 

hours and then, rotary-evaporated to 10 mL. This solution was kept for 3-4 days and brownish-

yellow crystals were generated. X-ray quality crystals were obtained after recrystalization from 

acetone/water (1:1) mixture. Yield: 75 %. IR (KBr, cm
-1

) 3645 (w) (OH); 3234 (w) (Aromatic-

CH); 2969 (s), 2907 (m), 2871 (m) (aliphatic CH); 1620 (s) (C=N); 1432 (m) (C=C); 847 (s) 

(PF6
-
). 

1
H-NMR [400MHz, CD3CN, 300K] δ/ppm =1.249 [s, 9H (t-butyl)]; 2.534 [s, 6H (CH3)]; 



www.manaraa.com

110 
 

 
 

2.631 [s, 6H (CH3)]; 4.173 [m, 4H (CH2)]; 7.358 [d, 2H(aryl)]; 7.526 [d, 2H (aryl)]. ESI pos. in 

MeOH: m/z = 468.1573 for [Co
III

(
4-tBu

py)(HL
oxime

)(Cl)]
+
. Anal. Calcd for C20H32ClCoF6N5O2P: 

C: 39.13; H:5.25; N: 11.41; Found: C: 39.05; H: 5.33; N: 11.37. 

         [Co
III

(
4-Pyr

py)(HL
oxime

)(Cl)]PF6 (5). [Co
III

(HL
oxime

)Cl2] (1mmol, 0.369 g) was dissolved in 

20 mL methanol. KPF6 (1.7 mmol, 0.3128 g) in 5 mL water was added to the solution followed 

by 
4-Pyr

pyridine (1 mmol, 0.148 g) in 5 mL of methanol. The reaction mixture was stirred for 2 

hours and then, rotary-evaporated to 10 mL. This complex was extracted into dichloromethane 

(CH2Cl2) and this extraction process was repeated for 3-4 times. Petroleum ether was added to 

the CH2Cl2 layer until the solution turns turbid. After a few days, a reddish-brown precipitate 

was obtained. Yield: 60 %. IR (KBr, cm
-1

) 3666 (w) (OH); 3115 (w) (Aromatic-CH); 2958 (w), 

2872 (w) (aliphatic CH); 1623 (s) (C=N); 1461 (m) (C=C); 835 (s) (PF6
-
). ESI pos. in MeOH: 

m/z = 481.1563 for [Co
III

(
4-Pyr

py)(HL
oxime

)(Cl)]
+
. Anal. Calcd for C20H31ClCoF6N6O2P: C: 38.32; 

H:4.98; N: 13.41; Found: C: 38.25; H: 4.91; N: 13.36. 

            [Co
III

(
4-Bz

py)(HL
oxime

)(Cl)]PF6 (6). [Co
III

(HL
oxime

)Cl2] (1mmol, 0.369 g) was dissolved in 

20 mL methanol. KPF6 (1.7 mmol, 0.3128 g) in 5 mL water was added to the solution followed 

by 
4-Bz

pyridine (1 mmol, 0.183 g) in 5 mL of methanol. The reaction mixture was stirred for 2 

hours and then, rotary-evaporated to 10 mL. This solution was kept for 3-4 days and brownish-

yellow precipitate were generated. X-ray quality crystals were obtained after recrystalization 

from ethanol/acetone (1:1) mixture. Yield: 80 %. IR (KBr, cm
-1

) 3509 (w) (OH); 3141 (w), 3090 

(w) (Aromatic-CH); 2934 (w), 2850 (w) (aliphatic CH); 1674 (m) (C=O); 1613 (m), 1598 (m) 

(C=N); 1448 (m) (C=C); 840 (s) (PF6
-
). ESI pos. in MeOH: m/z = 516.1207 for [Co

III
(
4-

Bz
py)(HL

oxime
)(Cl)]

+
. Anal. Calcd for C23H28ClCoF6N5O3P: C: 41.74; H:4.26; N: 10.58; Found: 

C: 41.60; H: 4.30; N: 10.16. 
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           [Co
III

(HL
oxime

)(H2O)2](ClO4)2 (7): [Co
III

(HL
oxime

)Cl2] (1 mmol, 0.369 g) was dissolved in 

20 mL ethanol. AgClO4 (2 mmol, 0.415 g) in 5 mL water was added to the solution. The reaction 

mixture was stirred for 2 hours and the greyish white precipitate of AgCl was removed upon 

filtration.
 
The filtrate was rotary-evaporated to 10 mL. This solution was kept for 3-4 days and 

brownish-yellow precipitate was obtained. Yield: 90 %. IR (KBr, cm
-1

) 3324 (m) (OH); 2934 

(w), 2850 (w) (aliphatic CH); 1623 (w), 1526 (w) (C=N); 1436 (w) (C=C); 1122 (s) (ClO4
-
). 

1
H-

NMR [400MHz, CD3CN, 300K] δ/ppm = 2.702 [m, 2H (CH2)]; 2.801 [s, 6H (CH3)]; 2.892 [s, 

6H (CH3)]; 4.242 [t, 4H (CH2)]. ESI pos. in MeOH: m/z = 298.0827 for [Co
III

(HL
oxime

)]
+
.  Anal. 

Calcd for C11H23Cl2CoN4O12: C: 24.78; H: 4.35; N: 10.51; Found: C: 24.48;
 
H: 4.38; N: 10.30. 

          [Ru
II
(bpy)2Co

III
(HL

oxime
)(H2O)2](ClO4)3 (8). 2EtOH: 1 equivalent of [Ru(bpy)2Cl2].2H2O 

(1 mmol, 0.520 g) was treated with 2 equivalents of AgClO4 (2 mmol, 0.415g) in 25 mL of 

EtOH/H2O (4:1) mixture at room temperature for 3 hours under argon atmosphere and the 

greyish white precipitate of AgCl was removed upon filtration.
 
[Co

III
(HL

oxime
)(H2O)2](ClO4)2 (4) 

(1 mmol, 0.533 g) in 20 mL of ethanol was subsequently added to the filtrate in the presence of 

triethylamine (1.7 mmol, 0.1717 g) as a base and stirred at refluxing condition for 48 hours under 

argon atmosphere to generate the desired complex. After the reaction, solvent was reduced to 5-

10 mL and excess NaClO4 in water was added to ensure precipitation. A brownish-black colored 

precipitate was obtained after keeping the solution in the fridge for 3-5 days.  Yield: 70 %. IR 

(KBr, cm
-1

) 3350 (m) (OH); 3250(w), 3150 (w) (aromatic CH); 2935(w), 2850 (w) (aliphatic 

CH); 1620 (s), 1520 (m) (C=N); 1463 (m) (C=C); 1088 (s) (ClO4
-
). Anal. Calcd for 

C35H50Cl3CoN8O18Ru: C: 36.97; H: 4.43; N: 9.85; Found: C: 37.14; H: 4.48; N: 9.71. 
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4.3. Results and discussions 

4.3.1. Syntheses and characterizations 

The tetradentate ligand H2L
oxime 

was generated by following literature procedures.
 
Complexes 1 – 

3 were obtained by stepwise reaction of CoCl2.6H2O with the ligand H2L
oxime 

to obtain the 

dichloro complex which was further treated with sodium azide or potassium thiocyanide to 

produce 1, and 2 respectively (Figure 4.1a). Complex 3 was generated by the stepwise formation 

of dibromo complex from the dichloro precursor followed by the addition of 4-substituted 

pyridines and KPF6 as shown in Figure 4.1b.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. (a) Synthetic scheme for 1 and 2. (b) Synthetic scheme for 3. 

(a) 

(b) 
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1 2 3 

These complexes were designed to study the role of axial substituents on the electronic and 

catalytic properties of their corresponding Co
III

 complexes. Red (1) and yellow (2, and 3) solids 

were obtained as the final products and characterized with multiple spectroscopic (FTIR and 
1
H-

NMR), spectrometric (ESI-MS) and combustion (C, H, N elemental analyses) techniques. The 

FTIR spectra for each complexes confirm two C=N peaks around 1500 and 1600 cm
-1

 

characteristic of the imine and oxime moieties. For 3, the presence of PF6
-
 counterion was 

confirmed from the very strong and broad peak around 850 cm
-1

,
 
respectively. High-resolution 

ESI mass spectra display the species [M + K
+
]

+
, [M + Na

+
]

+
, [M + PF6

-
]
+
 for 1-3, respectively 

(Figure 4.2). Experimental and simulated isotopic distributions are in agreement with the 

proposed molecular composition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Experimental (bars) and simulated (line) isotopic distribution for the molecular ions 

of complexes 1-3. 

 

 

Due to the diamagnetic nature of the low spin Co
III

 configuration, the 
1
H-NMR spectra were 

taken in CD3CN for selected complexes and shown in Figure 4.3.  



www.manaraa.com

114 
 

 
 

 

 

 

 

 

 

 

 

Figure 4.3. 
1
H-NMR spectra of 3 in CD3CN. 

The hetero-axial complexes 4, 5, and 6 were generated by stepwise reaction of CoCl2.6H2O with 

the ligand H2L
oxime 

to obtain the dichloro complex which was further treated with 4-substituted 

pyridines and KPF6 to get the desired complexes as shown in Figure 4.4. These new complexes 

were designed following the recent trends in the area of development of proton reduction 

catalysts. Yellow (4 and 6) and red (2) solids were obtained as the final products and 

characterized with spectroscopic (FTIR and 
1
H-NMR), ESI-MS spectrometric and combustion 

(C, H, N elemental analyses) methods. The FTIR spectra for each complex confirm a C=N 

stretching around 1600 cm
-1

 characteristic of the oxime ligand and the presence of PF6
-
 was 

confirmed from the broad peak around 850 cm
-1

. High-resolution ESI mass spectra display the 

species [M]
+
 for 4-6 (Figure 4.5). Experimental and simulated isotopic distributions are in 

agreement with the proposed molecular composition. Due to the diamagnetic nature of the low 

spin Co
III

-configuration, the 
1
H-NMR spectra were taken in CD3CN and shown in Figure 4.6. 

The spectra have shown appropriate line-splitting patterns for 4 with four aromatic protons 

between 6-8 ppm originating from the pyridine moiety, one OH proton at 18.85 ppm, six 
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methylene protons between 2.0-4.5 ppm and 12 methyl protons between 2.4-2.6 ppm. The 

intense peaks found around 1.3 ppm are from the protons (9H) of the t-butyl substituent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Synthetic schemes of complexes 4, 5, and 6. 
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Figure 4.5. Experimental (bars) and simulated (line) isotopic distribution for the molecular ions 

of complexes 4-6 (left to right). 

 

Figure 4.6. 
1
H-NMR spectra of 4 in CD3CN. 
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The complex 7 was obtained upon reaction between the dichloro complex with AgClO4 (Figure 

4.7). To synthesize heterometallic complex [Ru
II
Co

III
] 8, a two-step synthetic procedure was 

executed (Figure 4.7). During the first step, Ru(bpy)2Cl2 was treated with AgClO4 in EtOH/H2O 

(9:1) mixture at room temperature for few hours to generate ethanol coordinated Ru
II
(bpy)2 

complex which was further treated with complex 7 in presence of Et3N to generate the [Ru
II
Co

III
] 

complex 8. This complex was thoroughly characterized by multiple physico-chemical 

techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Synthetic Scheme for the formation of [Co
III

] and heterometallic [Ru
II
Co

III
] complex. 

These complexes were extensively characterized by FTIR, and 
1
H-NMR spectroscopy, ESI mass 

spectrometry, and elemental analyses. The presence of a perchlorate counterion was confirmed 

from the very broad peak around 1100 cm
-1

 in the FTIR spectra. 
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5.3.2. Molecular structures 

Complexes 2 and 3 yielded diffraction-quality crystals. The molecular geometries obtained from 

the X-ray crystal structures of 2 and 3 are shown in Figure 4.8. It confirmed the octahedral 

geometry of the cobalt center with the oxime ligand occupying the equatorial plane whereas 

thiocyanide or 
4-tBu

pyridine coligands are in the axial positions. Furthermore, one of the oxime-

oxygen atoms remains protonated while the other one is deprotonated forming an O-H---O 

hydrogen-bonding between them. 

 

Figure 4.8. The ORTEP representation of the cations of 2 and 3 at 50% ellipsoid probability. 

Bond lengths are in Å: For 2: Co(1)-N(2): 1.880(2); Co(1)-N(3): 1.908(3); Co(1)-N(4): 1.921(2); 

Co(1)-N(5): 1.896(3); Co(1)-S(1): 2.2972(10); Co(1)-S(2): 2.3006(9). For 3: Co(1)-N(1): 

1.901(3); Co(1)-N(2): 1.915(3); Co(1)-N(3): 1.912(3); Co(1)-N(4): 1.886(3); Co(1)-N(5): 

1.973(3); Co(1)-N(6): 1.977(3). 

 

Complexes 4 and 6 yielded diffraction-quality crystals. The molecular geometries obtained from 

the X-ray crystal structures of 4 and 6 are shown in Figure 4.9. It confirmed the octahedral 

geometry of the cobalt center with the oxime ligand occupying the equatorial plane whereas 

chloride and 
4-tBu

pyridine/
4-Bz

pyridine coligands are in the axial positions. Furthermore, one of 

the oxime-oxygen atoms remains protonated while the other one is deprotonated forming an 
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O-H---O hydrogen-bonding between them. Comparison of the Co–Cl bond length between 4 and 

6 reveals slightly longer bond in 4 (2.2376Å) in comparison with 6 (2.2336Å). On the other 

hand, the bond length between Co and pyridine nitrogen atom (Co1–N5) becomes longer from 

1.975Å in complex 4 to 1.990Å in 6. Therefore, we can say that incorporation of the electron-

withdrawing benzoyl substituent on the pyridine ring makes the Co–N5 (pyridine) bond weaker 

and the Co–Cl bond slightly stronger when compared with 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. The ORTEP representation of the cations of 4 and 6 at 50% ellipsoid probability. 

Bond lengths are in Å: For 1: Co(1)-N(1): 1.903(3); Co(1)-N(2): 1.917(2); Co(1)-N(3): 1.914(2); 

Co(1)-N(4): 1.898(2); Co(1)-N(5): 1.975(3); Co(1)-Cl(1): 2.237(8). For 3: Co(1)-N(1): 1.891(3); 

Co(1)-N(2): 1.934(3); Co(1)-N(3): 1.923(3); Co(1)-N(4): 1.893(3); Co(1)-N(5): 1.990(3); Co(1)-

Cl(1): 2.2336(11). 

 

 

4.3.3. Oxidation states and coordination preferences of the complexes generated in the 

electrochemical pathway towards proton reduction   

The reduced analogs of 1-6, generated in the electrochemical pathway, play important role in 

proton reduction catalysis. Therefore, a detailed analysis of their coordination environments, spin 

states and electronic structures is of the utmost importance. We employed multiple 

methodologies, namely, cyclic voltammetry, 
1
H-NMR, UV-visible, EPR spectroscopy and 
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density functional theory (DFT) to characterize the nature of those species. 

4.3.3.1. Redox Properties 

Cyclic voltammetry was performed for 1-3 in CH3CN to elucidate the nature of the redox species 

present in the solution (Figure 4.10). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Cyclic voltammograms of 1, 2, and 3 in CH3CN (Supporting electrolyte: TBAPF6; 

Scan rate: 100 mV/s; Glassy C: working electrode; Pt-wire: auxillary electrode; Ag/AgCl: 

reference electrode). 

 

All of these complexes displayed three reversible redox processes which can be tentatively 

assigned to Co
III

/Co
II
, Co

II
/Co

I
 and a ligand based. Co

III
/Co

II
 process was varied significantly 

upon changing the axial ligands whereas the Co
II
/Co

I
 couple (around -1.1 VFc/Fc+) was altered 

slightly. The Co
III

/Co
II
 redox potential was found to be less negative for neutral donors like        

4-tBu
pyridine, whereas the negatively charged ligand showed more negative potential (azide 

coordinated complex displays more negative potential than the thiocyanide coordinated one). 
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The corresponding E1/2 of Co
III

/Co
II
 potentials for complex 1-3 are -1.01, -0.65, and -0.25 VFc/Fc+, 

respectively. On the other hand, Co
II
/Co

I
 process remained between -1.05 to -1.2 VFc/Fc+ for all 

these complexes. The azide coordinated complex (1) exhibited the most negative shift of Co
II
/Co

I
 

potential at -1.20 VFc/Fc+ whereas the least negative Co
II
/Co

I
 process was observed for

 4-

tBu
pyridine substituted complex (3). The Co

I
-complex generated is known to be catalytically 

active towards proton reduction and generation of dihydrogen via a Co
III

–H and/or Co
II
–H 

intermediate. The ligand-based processes observed around -2.00 VFc/Fc+ may be attributed to the 

redox non-innocence of imine-oxime moieties. 

Table 4.2. Cyclic voltammetric parameters for 1-3 in CH3CN. The potentials are reported versus 

Fc/Fc
+
. 

 

 

 

 

 

 

 

 

 

Similarly, the electrochemical properties were also investigated for heteroaxially substituted 

cobalt complexes. Cyclic voltammetry (CV) study of 4 in CH3CN (Figure 4.11) revealed two 

events associated with the Co
III

/Co
II
 couple at -0.49V (Ep,c) and -0.70V (E1/2) [ΔE = 0.10V; 

|ipc/ipa| = 0.91], whereas the Co
II
/Co

I
 process appears at -1.09V (E1/2) [ΔE = 0.11V; |ipc/ipa| = 0.99] 

versus the ferrocene/ferrocenium (Fc/Fc
+
) couple. One additional reduction process found at                     

-2.11VFc/Fc+ [ΔE = 0.23V; |ipc/ipa| = 2.23] is attributed to the oxime ligand. A similar CV profile 

was observed for complex 6 with the potentials listed in Table 4.3. A significantly different 

behavior was observed for complex 5 with only one Co
III

/Co
II
 event (Figure 4.11 and Table 4.3) 

appearing.  

 

 

Co
III

/Co
II

  

E
½
,  [E

pc
; E

pa
], V 

(ΔE, V) |i
pc

/i
pa

| 

Co
II

/Co
I
  

E
½
, V 

(ΔE, V) |i
pc

/i
pa

| 

  

C=N/C
●

-N
-

 

E
½
, V 

(ΔE, V) |i
pc

/i
pa

| 

1 -1.01 (0.11) |1.59| -1.20 (0.10) |0.70| -2.03 (0.11) |1.37| 

2 -0.65 (0.12) |0.88| -1.14 (0.09) |0.99|   -2.02 (0.10) |1.26| 

3 -0.25 (0.25) |N/A| -1.07 (0.09) |1.09| -2.05 (0.10) |1.13| 
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Figure 4.11. Cyclic voltammograms of 4, 5, and 6 in CH3CN (Supporting electrolyte: TBAPF6; 

Scan rate: 100 mV/s; Glassy C: working electrode; Pt-wire: auxillary electrode; Ag/AgCl: 

reference electrode). 

 

The first Co
III

/Co
II
 event is irreversible for both 4 and 6 and the Ep,c shifts from -0.49 V to -0.43 

VFc/Fc+ (Table 4.3). The second Co
III

/Co
II
 process appears at around -0.70 V indicating that it is 

most likely originated from the same species. Complex 5 shows only one Co
III

/Co
II
 event at -0.59 

V.  Moreover, the potential for the Co
II
/Co

I
 event remains constant (~ -1.1 V) for all the three 

complexes. The Co
I
-complex generated is known to be catalytically active towards proton 

reduction and generation of dihydrogen via a Co
III

–H and/or Co
II
–H intermediate. The ligand-

based processes observed between -1.79 to -2.22 V may be attributed to the redox non-innocence 

of imine-oxime (in case of 4-6) and benzoyl moieties (for complex 6). 
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Table 4.3. Cyclic voltammetric parameters for 4-6 in CH3CN. The potentials are reported versus 

Fc/Fc
+
. 

 

 

 

 

 

 

To check for involvement of a solvent CH3CN molecule in the second Co
III

/Co
II
 redox events for 

4 and 6, the cyclic voltammetry experiment of 4 was repeated in a non-coordinating solvent, 

CH2Cl2 (Figure 4.12). Appearance of two Co
III

/Co
II
 events in presence of CH2Cl2 allows us to 

dismiss the possibility of interference of CH3CN in the second Co
III

/Co
II
 event. The origin of this 

second Co
III

/Co
II
 process will be discussed in a later section. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Cyclic voltammograms of 4 in coordinating (CH3CN) versus in a non-coordinating 

(CH2Cl2) solvent. The redox processes undergo cathodic shift in CH2Cl2. 
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Other ligand 

based events 

E
½
, V 
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pa

| 

1 E
p,c

: -0.49; Ep,a: -0.19 

-0.70 (0.10) |0.91| 

-1.09 (0.11) |0.99| -2.11 (0.23) |2.23|  

2 -0.59 (0.12) |0.45| -1.07 (0.08) |1.09| -2.07 (0.23) |N/A|  

3    E
p,c

: -0.43; E
p,a

: -0.13 

 -0.68 (0.11) |1.41| 

-1.09 (0.08) |1.19| -2.22 (0.12) |5.99| -1.79 (0.08) |N/A| 

 -1.91 (0.03)|1.03| 
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To understand the electrochemical processes, cyclic voltammetry has been performed in CH3CN 

for 7 and 8 (Figure 4.13). The complex 7 exhibits Co
III

/Co
II
, Co

II
/Co

I
, and ligand based 

processes. The bimetallic [Ru
II
Co

III
] (8) complex shows four reversible processes at E1/2 = 0.46 

V
Fc/Fc+

 due to Ru
II
/Ru

III
 couple, -1.27 VFc/Fc+ due to Co

II
/Co

I 
redox couple, -1.89 VFc/Fc+ and -2.11 

VFc/Fc+ due to the bipyridine and imine based processes and one irreversible process at Epa = 1.20 

VFc/Fc+ due to the ligand centered oxidation in CH3CN. The shifting of potential for Ru
II
/Ru

III
 

couple from 0 V as in [Ru(bpy)2Cl2] to 0.46 V for the [Ru
II
Co

III
] (8) complex further confirms 

the coordination of oxygen on ruthenium. All the cyclic voltammetric parameters are shown in 

Table 4.4. 

 

 

 

 

 

 

 

Figure 4.13. Electrochemistry of 7 and 8 in CH3CN. 

Table 4.4. Electrochemical parameters in CH3CN. 
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7  -0.14 (0.21) |1.01|   -1.13 (0.11) |1.16| -2.03 (0.15) |N/A| 

8 +0.47 (0.09) |0.53|  -1.28 (0.17) |1.12| -1.88 (0.14) |N/A| 

-2.12 (0.07) |N/A| 
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4.3.3.2. Electronic properties 

In the visible region, complexes 1-3 showed relatively transparent spectra which are 

characteristics of the Co
III

-parent state (Figure 4.14).  

 

 

 

 

 

 

 

 

Figure 4.14. UV-visible spectra of 1-3 ([C] = 1.0 × 10
-3

 M) in acetonitrile. 

 

Co
II
- and Co

I
-complexes of 2 were isolated in CH3CN by bulk electrolysis at -0.46VAg/AgCl and              

-0.95VAg/AgCl, respectively. Distinctive electronic behaviors of 2, and its Co
II
- and Co

I
-analogs 

were observed in the UV-visible region as illustrated in Figure 4.15. The spectrum of 2 does not 

show any charge-transfer (CT) band and it is a characteristic of a low-spin 3d
6 

Co
III

-center with a 

strong-field π-acceptor ligand framework.
  
This complex displays a faint yellow color. The Co

II
-

species shows a shoulder at around 435 nm (ε = 2742 M
-1

cm
-1

) and is orange in color which can 

be attributed to a metal-to-ligand charge transfer (MLCT) transition originating from the Co
II
-

center to the oxime ligand framework. The Co
I
-complex is tentatively associated with both intra-

ligand charge transfer (ILCT) and MLCT bands at 606 and 672 nm (ε = 3668 and 3562 M
-1

cm
-1

) 

accounting for the characteristic blue color of the complex. 
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Figure 4.15. (a) UV-absorption spectra of complex 2 [Co
III

(HL
oxime

)(SCN)2] and its reduced 

analogues, Co
II
- [λ = 435 nm (ε = 2742 M

-1
cm

-1
)] and Co

I
-species [λ = 606 nm (ε = 3668 M

-1
cm

-

1
); λ = 672 nm (ε= 3562 M

-1
cm

-1
)]. (b) Colors of complex 2 in different oxidation states of 

cobalt. 

 

Similarly, in the visible region, complexes 4-6 showed relatively transparent spectra which are 

characteristics of the Co
III

-parent state (Figure 4.16).  

 

 

 

 

 

 

 

 

Figure 4.16. UV-visible spectra of 4-6 ([C] = 1.0 × 10
-5

 M) in acetonitrile. 
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Co
II
- and Co

I
-complexes of 4 were isolated in CH3CN by bulk electrolysis at -0.46VAg/AgCl and                  

-0.95VAg/AgCl, respectively. Distinctive electronic behaviors of 4, and its Co
II
- and Co

I
-analogs 

were observed in the UV-visible region as illustrated in Figure 4.17. The spectrum of 4 does not 

show any charge-transfer band and it is a characteristic of a low-spin 3d
6 

Co
III

-center with a 

strong-field π-acceptor ligand framework.
5 

This complex displays a faint yellow color. The Co
II
-

species shows a distinct peak at 480 nm (ε = 2288 M
-1

cm
-1

) and is orange in color which can be 

attributed to a MLCT transition originating from the Co
II
-center to the oxime ligand framework. 

The Co
I
-complex is tentatively associated with both ILCT and MLCT bands at 572 and 685 nm 

(ε = 1738 and 1570 M
-1

cm
-1

) accounting for the characteristic blue color of the complex. 

 

 

Figure 4.17. (a) UV-absorption spectra of complex 4 [Co
III

(
4-tBu

py)(HL
oxime

)(Cl)]PF6 and its 

reduced analogues, Co
II
- [λ = 480 nm (ε = 2288 M

-1
cm

-1
)] and Co

I
-species [λ = 572 nm (ε = 

1738 M
-1

cm
-1

); λ = 685 nm (ε= 1570 M
-1

cm
-1

)]. (b) Colors of complex 1 in different oxidation 

states of cobalt. 

 

 

               UV-visible spectra were taken in CH3CN to understand the electronic properties of the 
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heterometallic complex (Figure 4.18). This complex exhibited brown color and the visible 

region spectra are occupied by strong metal to ligand charge transfer (MLCT) bands at 440-500 

nm from Ru
II
 to bipyridine moieties. We compared the spectra of [RuCo] complexes with its 

precursor cobalt and ruthenium complexes (Figure 4.18). 

 

 

 

 

 

 

 

 

 

Figure 4.18. UV-visible spectra for 2 in CH3CN in comparison with Co(oxime)Cl2 and 

Ru(bpy)2Cl2. 

 

We are interested to study the coordination environments of various redox species generated 

from heteroaxially substitued cobalt complexes due to the complicated nature of the redox 

behavior. 

5.3.3.3. Coordination environments of the Co
III

-species 

Crystal structures combined with 
1
H-NMR spectra provided the strongest evidence to elucidate 

the coordination environment for Co
III 

in the parent state. Crystal structure of complex 4 (Figure 

4.8) suggested hexa-coordinated geometry with oxime as the planar ligand, and chloride and 4-

substituted pyridines as axial ligands in the solid state. The 
1
H-NMR spectra (Figure 4.6) 
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confirmed the presence of 4-substituted pyridines in the Co
III

 state in solution even in the 

presence of coordinating solvent such as CD3CN.  

      In the study to elucidate the second Co
III

-species present in the solution of complex 4 during 

the cyclic voltammetry experiment, possibilities of formation of [Co
III

(HL
oxime

)Cl2] and/or 

[Co
III

(
4-tBu

py)2(HL
oxime

)](PF6)2 complexes were considered. Cyclic voltammetry experiments 

were performed separately with those two complexes synthesized independently. Figure 4.19 

illustrates the comparison of the cyclic voltammogram of complex 4 with those of its dichloro 

and di
4-tBu

pyridine analogs. The anodic potential (Ep,a, -0.19V) of the first Co
III

/Co
II
 process of 4 

nearly matches to that (-0.12V) of the Co
III

/Co
II
 process of the di

4-tBu
pyridine complex, 

suggesting the formation of the same Co
II
-species during the oxidation back to Co

III
 for both the 

complexes. Moreover, the half-wave potential (E1/2, -0.70V) of the second Co
III

/Co
II
 process of 4 

is identical to that of the Co
III

/Co
II
 process for the dichloro analog suggesting the possibility of 

formation of this dichloro species during the CV experiment of complex 4. In addition, the 

appearance of this second Co
III

/Co
II
 process at the very same potentials for 4 and 6 suggests the 

formation of the same dichloro species in both cases. 
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Figure 4.19. Comparison of the cyclic voltammograms of [Co
III

(HL
oxime

)Cl2], [Co
III

(
4-

tBu
py)2(HL

oxime
)](PF6)2, and 4 in CH3CN. The second Co

III
/Co

II
 event appears at the same 

potentials for 4 and its dichloro analog, [Co
III

(HL
oxime

)Cl2] suggesting the formation of the later 

species during the electrochemistry of 4. 

 

 

To determine the lability of the axial ligands in complex 4, 
1
H-NMR experiments were 

performed with 4 in presence of the external chloride and 
4-tBu

pyridine sources, added separately. 

The acidic nature of the oxime-OH hydrogen was evaluated as well since it can contribute to the 

cyclic voltammogram. We added one equivalent of 
4-tBu

pyridine, tetraethyl ammonium chloride 

(Et4NCl), and triethyl amine (Et3N) independently, to the CD3CN solution of 4 and compared 

their 
1
H-NMR spectra with those of complex 4 and free 

4-tBu
pyridine (Figure 4.20) 
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Figure 4.20. (a) 
1
H-NMR experiments in CD3CN of 4 upon addition of 1 equivalent of               

4-tBu
pyridine, Et4NCl, and Et3N. (b) Energetics of substitution of the axial ligands in complex 4. 

As demonstrated by the 
1
H-NMR spectra and DFT calculations, chloride can replace the              

4-tBu
pyridine ligand in 4 but the 

4-tBu
pyridine ligand cannot substitute the chloride. 

 

Uncoordinated 
4-tBu

pyridine exhibited two sets of 
1
H-NMR peaks at 7.36 (HB) and 8.50 (H'A) 

ppm whereas the coordinated 
4-tBu

pyridine in complex 4 displayed peaks at 7.35 (HB) and 7.52 

(HA) ppm. The HB protons retain the same chemical shift but the H'A protons shifted from 8.50 to 

 

(b) 

(a) 

[LCoIIIClPy] + 1eq. Py

[LCoIIIClPy] + 1eq. (Et4N)Cl

[LCoIIIClPy] + 1eq. Et3N

Chemical shift (ppm)

1 + 1 eq. 
4-tBu

py 

1 + 1 eq. (Et
4
N)Cl 

1 + 1 eq. Et
3
N 
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7.52 ppm on coordinating 
4-tBu

pyridine to the metal center. After one equivalent of 
4-tBu

pyridine 

was added to the CD3CN solution of 4, appearance of the signals from the uncoordinated            

4-tBu
pyridine protons at 8.55 ppm (2H) was observed and an increase of the intensity of the peak 

at 7.37 ppm (2H + 2H) was found whereas the proton count at 7.48 ppm (associated with the 

coordinated 
4-tBu

pyridine) did not change in intensity suggesting no coordination of the external   

4-tBu
pyridine ligand by replacing the chloride on cobalt. Furthermore, no deprotonation, i.e. no 

change of the proton count or shift of the oxime-OH hydrogen at 18.84 ppm was found upon 

addition of 
4-tBu

pyridine. On the contrary, when 1 equivalent of Et3N was added to the solution of 

4 in CD3CN, we observed a considerable decrease of the oxime-OH peak intensity and slight 

shift of the position of the signal from the OH suggesting that Et3N can deprotonate the OH. 

When external chloride source was added in the form of Et4NCl (one equivalent) to the CD3CN 

solution of 4, peaks at 7.39 (2H) and 8.50 ppm (2H) were found which are characteristics of the 

uncoordinated 
4-tBu

pyridine ligand that can be obtained via a substitution process where the 
4-

tBu
pyridine ligand in complex 4 gets replaced by the external chloride. These 

1
H-NMR 

experiments suggest that external 
4-tBu

pyridine can neither replace chloride nor deprotonate the 

oxime-OH in the Co
III

-complex whereas an external chloride can substitute the 
4-tBu

pyridine 

ligand in 4.  

In order to confirm these substitution processes, DFT calculations were used to obtain the 

energetics of different chemical events, i.e. substitution and loss of the axial ligands. All the 

calculated reaction energies reported are free energy changes in kcal/mol unless otherwise 

mentioned. The low spin states were found to be energetically favorable for all the calculated 

complexes which is confirmed by EPR as well. 

         As depicted in Figure 4.20b, the substitution of the 
4-tBu

pyridine ligand in complex 4 by an 
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external chloride is calculated to be energetically favorable by 9.7 kcal/mol while an external      

4-tBu
pyridine replacing the chloride ligand in 4 is found to be unlikely as the substitution process 

is energetically uphill by about 12 kcal/mol. Moreover, the loss of chloride from the positively 

charged complex 4 should have a significant coulomb barrier. Therefore, the calculated results 

are in consistent with the experimental observation of substitution of the 
4-tBu

pyridine ligand in 

complex 4 by an external chloride giving rise to the dichloro complex [Co
III

(HL
oxime

)(Cl)2]. 

Table 4.4 shows the energetics of the substitution of the
 
pyridine ligands by external chloride for 

4-6. The mechanism of this substitution process is expected to involve a coordinatively 

unsaturated five-coordinate Co
III

-intermediate from the loss of the axial pyridine ligand and this 

event is supposed to be uphill in energy. This first step is the limiting step and it requires about 

14 kcal/mol energy for complexes 4 and 6. The addition of an external chloride to the five-

coordinate intermediate is favored by 23 kcal/mol and drives the overall substitution process 

forward for complexes 4 and 6 and these complexes have a large preference for the substitution 

mechanism as they favor the overall process by about 9-10 kcal/mol. Complex 5, on the other 

hand, has the first step most energy-demanding (20 kcal/mol) among the three complexes and 

shows little (as the total energy of the substitution process is only -3.2 kcal/mol) preference for 

the substitution of the axial pyridine ligand by an external chloride. As shown in Figure 4.11, 

absence of the second Co
III

/Co
II
 process for complex 5 implies the nonexistence of 

[Co
III

(HL
oxime

)(Cl)2]
 
species during the CV experiment. The Co–N(py) bond distances found in 

the optimized geometries of 4, 5, and 6 are 1.988, 1.972 and 1.986 Å, respectively. Complex 5 

with the electron-donating pyrrolidine ligand, has the strongest Co–N(py) bond among the three 

complexes and hence, the Co–N(
4-Pyr

py) bond will be least susceptible towards substitution by 

chloride. These structural data support the trend of the substitution reaction energies [(A+B) in 
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Table 4.5] calculated for 4-6 and we conclude that the axial pyridine ligand substitution will be 

more difficult in complex 5, compared to 4 and 6, and is unlikely to happen. 

Table 4.5. Energetics of the substitution of pyridine with external chloride in complexes 4, 5, 6.  

 

 

 

 

 

 

 

To determine the spin-states of the Co
III

-complexes, we performed the EPR experiments in 

CH3CN (Figure 4.21). The silent signal in the EPR spectrum confirmed the diamagnetic low-

spin nature of Co
III

 with 3d
6
 configuration and 0 unpaired electrons.  

       Thus, from the above discussions, we conclude the followings, a) the second Co
III

/Co
II
 

events observed for complexes 4 and 6 are due to the formation of a Co
III

-species, 

[Co
III

(HL
oxime

)Cl2]. The later complex is obtained by the substitution of the pyridine ligand on 

the cobalt center in 4 and 6 by an external chloride and b) this substitution is unlikely to happen 

in case of complex 5 because of its strongest Co–N(
4-Pyr

py) bond when compared among all three 

complexes 4-6. As a result, complex 5 does not show the second Co
III

/Co
II
 process in the CV 

experiment. 

5.3.3.4. Coordination environments of the Co
II

-species 

To elucidate the spin states of the Co
II
-complexes generated after the first and second Co

III
/Co

II 

events for complex 4, EPR measurement were performed on the first
 
and second Co

II
-species 
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obtained following the bulk electrolysis at appropriate potentials of -0.20 VAg/AgCl and                   

-0.46 VAg/AgCl, respectively. These potentials were selected after careful observation of the cyclic 

voltammetric profile of complex 4. Figure 4.21 displays the EPR spectra recorded. The first
 

Co
II
-species shows a peak corresponds to a low-spin (S = ½) 3d

7
 Co

II
 center and the presence of 

the super-hyperfine structure in the EPR spectrum suggests axial interaction of cobalt with a 

nitrogen donor. This suggests the presence of a possible N5 environment around the cobalt center 

implying that the 
4-tBu

pyridine moiety is retained on the metal center after the first Co
III

/Co
II 

reduction of complex 4. The EPR spectrum of the second Co
II
-species supports the low-spin 

configuration (S = 1/2) of the metal but it lacks the super-hyperfine signature proposing a N4 

environment around the metal center with the possibility of the presence of the chloride axial 

ligand(s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21. EPR experiments to identify the spin-states and coordination environments of the 

complexes (Co
III

, Co
II
, and Co

I
) generated during the electrochemistry of 4 in CH3CN. 
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Titration experiments were carried out with 4 to evaluate the effects of the external chloride and 

4-tBu
pyridine ligands added separately during the electrochemistry measurement on 4 (Figure 

4.22a). In the presence of increasing amounts of Et4NCl, the first
 
Co

III
/Co

II
 process started 

decreasing while the second Co
III

/Co
II
 process started increasing in intensity. After adding about 

0.6 equivalents of Et4NCl, the first process disappeared completely.   

 

Figure 4.22. (a) Changes of the cyclic voltammograms of 4 upon addition of Et4NCl and 
4-

tBu
pyridine in CH3CN. The first Co

III
/Co

II
 event disappears with increase of the amount of the 

external chloride source added whereas 
4-tBu

pyridine has no effect on the CV profile. (b) 

Calculated activation barriers showing that the dissociation of chloride ligand is more favorable 

than the dissociation of the 
4-tBu

pyridine ligand from [Co
II
(
4-tBu

py)(HL
oxime

)(Cl)] giving rise to 

[Co
II
(
4-tBu

py)(HL
oxime

)]
+
. 

 

On the other hand, addition of 
4-tBu

pyridine ligand showed very little cathodic shift for both the 

Co
III

/Co
II
 processes. Cyclic voltammogram (Figure 4.23) of a solution prepared independently 

from addition of equal amounts of Et4NCl and 4, confirmed the disappearance of the first 

Co
III

/Co
II
 process and an increase in intensity of the second Co

III
/Co

II
 event. A solution prepared 

similarly from addition of equal amounts of 
4-tBu

pyridine and 4, failed to show any effect as both 

the Co
III

/Co
II
 processes retained their intensities (Figure 4.23). These results confirm the CV 
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4 + 
4-tBu

pyridine 

4 + Et
4
NCl  1

 +0.2 eq 

 +0.4 eq 

 +0.6 eq 

 +0.8 eq 

 +1.0 eq 

 +1.2 eq 

 +1.4 eq 

 +1.6 eq 

 +1.8 eq 

 +2.0 eq 

 1

 + 0.2 eq 

 + 0.4 eq 

 + 0.6 eq 

 + 0.8 eq 

 + 1.0 eq 

 + 1.2 eq 

 + 1.4 eq 

 + 1.8 eq 

 + 2.0 eq 

0.0 -0.2 -0.4 -0.6 -0.8
0

2

4

6

8

10

E in V vs. Fc/Fc
+



www.manaraa.com

137 
 

 
 

experiments in Figure 4.22a and suggest that the chloride ion is involved in both the Co
III

/Co
II
 

reduction events of complex 4. On the other hand,
 4-tBu

pyridine has little or no involvement 

towards the Co
III

/Co
II
 reduction. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23. Change of Cyclic voltammogram of 4 upon addition of 1 equivalent of Et4NCl and 
4-tBu

pyridine in CH3CN. 

 

DFT calculations found that the loss of chloride from complex [Co
II
(

4-tBu
py)(HL

oxime
)(Cl)], 

obtained after the first Co
III

/Co
II
 reduction of 4, is thermodynamically favorable by 6.8 kcal/mol 

giving rise to the five-coordinate [Co
II
(
4-tBu

py)(HL
oxime

)]
+
. Alternatively, dissociation of the        

4-tBu
pyridine ligand is calculated to be downhill by 10.2 kcal/mol. These results demonstrate that 

there is a greater thermodynamic preference of [Co
II
(
4-tBu

py)(HL
oxime

)(Cl)] to release 
4-tBu

pyridine 

rather than chloride giving rise to [Co
II
(HL

oxime
)(Cl)]. However, calculations of the transition 

states of the axial ligand dissociation find that the loss of the chloride is associated with a larger 

kinetic barrier than that of the dissociation of the 
4-tBu

pyridine ligand (Figure 4.22b). The 
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difference between the activation energies is 1.2 kcal/mol. The Arrhenius model, k= A*e
(-E/RT)

, 

estimates that the rate constant k of a chemical reaction increases by 10 times with a decrease of 

the activation energy E by 1.36 kcal/mol at 298.15K. Therefore, we propose that the dissociation 

of the axial ligands from [Co
II
(
4-tBu

py)(HL
oxime

)(Cl)] is kinetically controlled favoring the 

pathway that leads to the formation of [Co
II
(
4-tBu

py)(HL
oxime

)]
+
 and this is confirmed by the 

identification of the later species by EPR (Figure 4.21).               

Table 4.6 shows the metal–ligand bond distances of complex 4 from the X-ray crystal and the 

DFT-calculated structures. We also evaluated the metal-ligand bond distances of the one-electron 

reduced analog of 4 by DFT calculation. The Co
III

/Co
II
 reduction is associated with the addition 

of an electron into the 3dz2 orbital of the metal which being antibonding in nature increases the 

metal–axial ligand bond distances in the Co
II
-complex and the axial ligands become prone to 

dissociation. This is illustrated in Table 4.6 and the increase of the Co–Cl bond length being 

0.441Å is considerably greater than the increase (0.300Å) of the Co–N(
4-tBu

py) bond length. 

Therefore, the Co–Cl bond gets significantly more labile than the Co–N(
4-tBu

py) bond in [Co
II
(
4-

tBu
py)(HL

oxime
)(Cl)] and the loss of the chloride ligand is invoked with the reduction of complex 

4. The dichloro complex of Co
II
, [Co

II
(HL

oxime
)(Cl)2]

-
, obtained from the reduction of 

[Co
III

(HL
oxime

)(Cl)2], is negatively charged and therefore, the loss of chloride is expected to be 

favorable from it. This ligand loss is calculated to be downhill by 9.7 kcal/mol giving rise to the 

five-coordinate neutral [Co
II
(HL

oxime
)(Cl)]

 
complex. The later complex can substitute the 

remaining chloride ligand with a 
4-tBu

pyridine and/or a solvent acetonitrile molecule to give rise 

to [Co
II
(
4-tBu

py)(HL
oxime

)]
+
 and/or [Co

II
(CH3CN)(HL

oxime
)]

+
 complex, respectively.

 
Absence of 

the hyperfine structure in the EPR spectrum (Figure 4.18) of the Co
II
-species, obtained after the 

second Co
III

/Co
II
 reduction of complex 4, suggests that these substitution processes are slow.  



www.manaraa.com

139 
 

 
 

Table 4.6. Co–ligand bond lengths
a
 of complex 4 from the X-ray crystal and the DFT-optimized 

structures. Metal–ligand bond distances
a
 of the one-electron reduced (Co

II
) analog of 4 are also 

reported. 

 

 

 

 

 

 

Thus, we can conclude that 5-cordinate geometry was exhibited by Co
II
 species after 1

st
 

reduction with 
4-tBu

pyridine as the axial ligand. The 2
nd

 reduction generates the Co
II
 species with 

two chloride axial ligands which subsequently get replaced by 
4-tBu

pyridine/CH3CN to produce 5-

coordinated Co
II
-species. All these species have shown low-spin 3d

7
 configuration. 

 

4.3.3.5. Coordination environments of the Co
I
-species 

The EPR results following bulk electrolysis of complex 4 at the potential of -0.95VAg/AgCl in 

CH3CN showed that the Co
I
-complex, generated after the Co

II
/Co

I
 reduction, is a low-spin 

singlet 3d
8
 species. A silent EPR spectrum was recorded for the Co

I
-species as shown in Figure 

4.21. We propose this species to be five-coordinate with 
4-tBu

pyridine ligand attached to the metal 

center. Calculations found that the oxime ligand may show some degree of redox non-innocence 

during the reduction event but the electrons on the ligand and the metal centers are strongly 

antiferromagnetically coupled giving rise to an overall singlet (S=0) state of the reduced species 

(Figure 4.24).  
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Figure 4.24. Redox non-innocence of the oxime ligand during the reduction of [Co
II
(
4-

tBu
py)(HL

oxime
)]

+
. Mulliken spin density analysis i and spin density plot ii for the complex. The 

hydrogen atoms are omitted for clarity in the spin density plot ii. 

Calculations found that the reduction of [Co
II
(
4-tBu

py)(HL
oxime

)]
+
 complex may have significant 

degree of redox non-innocence character displayed by the oxime ligand as the resulting metal-

reduced, closed-shell (S=0), 3d
8
 Co

I
-complex, [Co

I
(
4-tBu

py)(HL
oxime

)], is 3.8 kcal/mol higher in 

energy than the ligand-reduced, open-shell (S=0), 3d
7
 Co

II
-complex, [Co

II
(

4-tBu
py)(HL

oxime•
)]. As 

illustrated in Figure 4.24, spin density analysis of [Co
II
(
4-tBu

py)(HL
oxime•

)] complex shows that 

the total spin on the cobalt center is +0.91 while it is -0.90 on the imine-oxime ligand framework 

confirming the electronic state of the complex as open-shell [Co
II
(
4-tBu

py)(HL
oxime•

)]. The two 

unpaired electrons on the cobalt center and imine-oxime ligand HL are antiferromagnetically 

coupled as shown by the spin density plot (blue and green) in Figure 4.24ii giving rise to an 

overall singlet (S=0) state. However, the EPR experiment (Figure 4.21) demonstrated a silent 

spectrum that is characteristic of an overall singlet state (S=0) and failed to distinguish between 

the closed-shell and open-shell configurations of the species obtained from the reduction of 

[Co
II
(
4-tBu

py)(HL
oxime

)]
+
.
 
When we reevaluated the energy difference of these two configurations 
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with different functionals, we found that the energy difference between the two electronic states 

is dependent on the functional used and hybrid functionals favor the open-shell configuration 

while the pure functionals predict the two configurations to be isoenergetic.  

         To gain insights about the coordination environment of the Co
I
-species, this complex was 

independently synthesized using a known chemical reduction method
9
. The Co

III
-parent complex 

4 in dry methanol was treated in presence of a methanol solution of sodium hydroxide (NaOH) 

and sodium borohydride (NaBH4) in a schlenk flask under airtight conditions in argon 

atmosphere. The resulting dark-blue suspension was vigorously stirred and dried under vacuum 

followed by addition of acetonitrile to solubilize the Co
I
-complex. Rapid filtration followed by 

vaccum drying generates the blue-colored Co
I
-complex which was stored in a glove-box. The 

1
H-NMR spectra of this complex are shown in Figure 4.25. The well-defined peaks of the 

spectra assured the low-spin nature of the species and the appearance of the signals from the 

aromatic protons and t-butyl substituent confirmed the presence of 
4-tBu

pyridine ligand on the 

metal center.  In addition, formation of five-coordinate Co
I
-complexes with axial ligands like 

pyridine and boron-capped dimethylglyoxime in the equatorial positions is well-known in 

CH3CN solvent.
10

 

 

 

 

 

 

 

 

Figure 4.25. 
1
H-NMR spectra of the Co

I
-complex, [Co

I
(
4-tBu

py)(HL
oxime

)], in CD3CN. 

Aromatic protons 

t-butyl  
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Figure 4.26 summarizes our proposed electrochemical pathway starting from the parent complex 

4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26. Proposed electrochemical pathway starting from complex 4. The chloride released 

after the first Co
III

/Co
II
 reduction can replace the 

4-tBu
py ligand in 4 giving rise to the second 

Co
III

-species, [Co
III

(HL
oxime

)(Cl)2]. Reduction of the later species followed by substitution of the 

chloride ligands with 
4-tBu

py give rise to [Co
II
(
4-tBu

py)(HL
oxime

)]
+
 which gets further reduced to 

[Co
I
(
4-tBu

py)(HL
oxime

)]
+
, the active form of the catalyst. The substitution event in step 3 does not 

preclude the involvement of solvent CH3CN. 

 

The first Co
III

/Co
II
 reduction followed by loss of a chloride ligand converts complex 4, [Co

III
(
4-

tBu
py)(Cl)(HL

oxime
)]

+
, into  the five-coordinate Co

II
-species [Co

II
(
4-tBu

py)(HL
oxime

)]
+
 (step 1). The 
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chloride released can replace the 
4-tBu

py ligand  in the remaining [Co
III

(
4-tBu

py)(Cl)(HL
oxime

)]
+
 

complex giving rise to a second Co
III

-species, [Co
III

(HL
oxime

)(Cl)2], and free 
4-tBu

pyridine 

molecule (step 2). The second Co
III

/Co
II
 reduction is [Co

III
(HL

oxime
)Cl2] complex transforming 

into [Co
II
(HL

oxime
)Cl2]

-
 and the later species can replace the chloride ligands with one                 

4-tBu
pyridine molecule from the solution and can convert into [Co

II
(
4-tBu

py)(HL
oxime

)]
+
 complex 

(step 3) that undergoes Co
II
/Co

I
 reduction and transforms into five-coordinate [Co

I
(
4-

tBu
py)(HL

oxime
)] (step 4) which is the active species for proton reduction catalysis. Here it is 

important to mention that in a previous study
11

 with a similar cobalt oxime complex, generation 

of a Co
II
–Cl species was proposed in step 1. It was further concluded that an outer sphere 

electron transfer mechanism (involving the Co
II
–Cl and the parent Co

III
-complexes) and transfer 

of the chloride ligand from one metal center to another can give rise to a Co
III

-dichloro species. 

The present study with the cobalt oxime complex 4 is not in agreement with those proposals. 

 

4.3.4. Catalytic Yields and Mechanism 

Rational design of enhanced proton-reducing catalysts requires a detailed understanding of the 

plausible catalytic mechanisms and study of the catalytic parameters, e.g. overpotential (η), turn-

over number (TON), and Faradaic efficiency are absolutely crucial in this regard. 

4.3.4.1. Catalytic Profiles and Yields 

These complexes (1-8) were treated with mild acid, such as TFA to evaluate their catalytic 

activity towards proton reduction.  

First, we treated the homoaxial complexes 1-3 with TFA. The cyclic voltammetry experiment 

was performed for all of these complexes to probe catalytic activity. A catalytic peak appeared 

close to the Co
II
/Co

I
 process for all the cases whereas the Co

III
/Co

II
 process remains unchanged. 
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The catalytic CV plots were shown in Figure 4.27. The overpotentials for these complexes were 

altered from 0.41, 0.34, and 0.32 V for 1-3 respectively, measured including the 

homoconjugation effect of the acid.
12

 A redox process appears slightly negative to the Co
III

/Co
II
 

couple which can be assigned as the Co
III

-H/Co
II
-H process. Controlled potential electrolysis was 

performed to confirm the generation of hydrogen. A fixed potential of -1.0 VAg/AgCl was applied 

in CH3CN solution of 1-3 in presence of TFA. The turnover numbers for these complexes were 

found to be 12, 19.5, and 17.5 after three hours for 1-3 respectively, where the corresponding 

Faradaic efficiency was calculated to be 50%, 75%, and 70%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27. Cyclic voltammetry experiments showing the electrocatalytic behavior of 1-3 

towards H2 generation in the presence of TFA in CH3CN solution. The numbers 0-10 indicate the 

equivalents of TFA used in comparison to 1-3 (Inset: Plot of charge consumed against time 

during the bulk-electrolysis experiment for dihydrogen generation by complex 1-3 in about three 

hours). 

1 2 

3 
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We performed the catalytic and mechanistic studies for heteroaxial complexes in great detail. We 

investigated the electrocatalytic behavior of 4 in presence of trifluoroacetic acid (TFA with pKa = 

12.7 in CH3CN) and the cyclic voltammetry data revealed a catalytic peak appearing near the 

reduction potential of the Co
II
/Co

I
 couple upon addition of various equivalents (0 – 10) of TFA 

(Figure 4.28) suggesting the Co
I
-species to be catalytically active. Generation of H2 happens at a 

low overpotential of 0.35V, measured including the homoconjugation effect of the acid.
12 

The 

CV profile of the Co
III

/Co
II
 couple did not change with increasing amount of acid ruling out the 

possibility of the involvement of this couple towards proton reduction. We also observed a new 

process appearing at a potential slightly negative to that of the catalytic peak in presence of ≥ 5 

equivalents of TFA which may be attributed to the Co
III

-H/Co
II
-H couple. 

 

 

 

 

 

 

 

 

 

 

Figure 4.28. Cyclic voltammetry experiments showing the electrocatalytic behavior of 4 towards 

H2 generation in the presence of TFA in CH3CN solution. The numbers 0-10 indicate the 

equivalents of TFA used in comparison to 4 (Inset: Plot of charge consumed against time during 

the bulk-electrolysis experiment for dihydrogen generation by complex 4 in about three hours). 

 

The reduced analog for 4 was generated via controlled potential electrolysis at -1.0 VAg/AgCl in 
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the presence of TFA and TON was determined by gas-chromatography. A TON of 18.7 within 

three hours was observed in CH3CN in presence of 4.0 x 10
-5

 mol of catalyst 4 and one hundred 

equivalents of TFA. The solution in the main chamber displayed a color change from faint 

yellow to dark green during the controlled potential electrolysis experiment. The Faradaic 

efficiency for the catalysis was calculated to be 77% for 4. As shown in Figure 4.28 inset, 

complex 4 consumed around 200 Coulombs of charge in three hours validating that the complex 

4 is catalytically active. 

              Electrocatalytic dihydrogen generation was confirmed with complexes 5 and 6 as well 

(Figures 4.29) following the same method described above. Overpotential and rate of H2 

generation (kobs) for 4-6 were calculated from the CV experiments whereas TON and Faradaic 

efficiency were measured from the controlled potential electrolysis experiments and all of these 

catalytic parameters are reported in Table 4.7. 

Figure 4.29. Cyclic voltammetry experiments showing the electrocatalytic behavior of 5 and 6 

towards H2 generation in the presence of TFA in CH3CN solution. The numbers 0-10 indicate the 

equivalents of TFA used in comparison to 5 or 6 (Inset: Plot of charge consumed against time 

during the bulk-electrolysis experiment for dihydrogen generation by complex 5 or 6 in about 

three hours). 

5 6 
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Table 4.7. Catalytic parameters for 4-6 in CH3CN in presence of TFA ([catalyst] : [acid] = 1: 

100). 

 

 

 

 

 

 

 

 

 

As depicted in Table 4.7, variation of the substituent on the pyridine ligand has little or no effect 

on the overpotential of complexes 4-6. Although overpotential did not vary, kobs increased by a 

factor of 1.95 on changing the substituent on the pyridine moiety from electron-withdrawing 

benzoyl in 6 to electron-donating pyrrolidine in 5. It is expected that in the later complex, the Co
I 

center becomes more nucleophilic than that in complex 6 and hence, the metal center in 5 can 

react faster with a proton. The TON varies from 18.7 to 13.8 when compared between complexes 

4-6 with 4 displaying the highest TON. The Faradaic efficiency for proton reduction was 

calculated to be around 80%. Complexes 4-6 exhibited low overpotential and higher catalytic 

current with respect to the blank in the presence of TFA. Moreover, these complexes consumed 

much more charges (Figures 4.29 inset) than those consumed by the blank solutions validating 

that all these three complexes are catalytically active.  

           Because the Co
II
/Co

I
 process was maintained in the cyclic voltammogram, we performed 

proton reduction catalysis with complex 7 and 8 in the presence of TFA. The overpotential was 

calculated to be 0.34 and 0.37 V, respectively for 7 and 8 in the presence of 10 equivalents of 

TFA, after considering the homoconjugation effect. To confirm the release of hydrogen, bulk 

electrolysis experiment was performed at -1.0 VAg/AgCl. Figure 4.30 shows the plot of charge 

versus time for the monometallic Co
III

 complex 7 and the heterolytic [Ru
II
Co

III
] complex 8 

Catalytic parameters 4  5 6 

E (H
+
/H2) (V) vs. Fc/Fc

+
 -1.03 -1.04 -1.03 

Overpotential (V)  

(10eq TFA) 

 0.35  0.36 0.35 

Kobs (s
-1

) (10eq TFA) 3.02 5.18 2.66 

TON/3h (4.0 X 10
-5

 mol) 18.7 13.8 13.8 

Faradaic efficiency (%) 77 84 75 
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during the controlled potential experiment. The TON of complex 7 was calculated to be 7.2 with 

a Faradaic efficiency of 75% in one hour, whereas the TON and Faradaic efficiency for complex 

8 was calculated to be 7.0 in one hour and 75%, respectively. 

 

 

 

 

 

 

 

 

 

Figure 4.30. Change of charge versus time during bulk-electrolysis for cobalt-module (7) and 

[Ru
II
Co

III
] (8) complex in presence of TFA at -1.0 VAg/AgCl applied potential. 

 

 

4.3.4.2. Analysis of the catalytic pathways for H2 evolution  

Experimentally, complexes 4, 5, and 6 displayed the electrocatalytic waves in presence of TFA 

at potentials very close to the reduction potentials of Co
II
/Co

I
. E(H+/H2) are found to be -1.03,         

-1.04 and -1.03V versus the Fc/Fc
+
 couple in presence of 10 equivalents of TFA for complexes 

4, 5 and 6, respectively, (Table 4.8) and the Co
II
/Co

I
 reduction potentials are measured to be -

1.09, -1.07 and -1.09V versus the Fc/Fc
+
 couple for 4, 5, and 6, respectively. Electrocatalytic H2 
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evolution by cobalt oximes is known to occur by either heterolytic (monometallic) or homolytic 

(bimetallic) pathways. It is known
13

 that the pathways of H2 evolution by cobalt oximes are 

dependent on the strength of the acid present in the medium and proton-coupled electron transfer 

(PCET) process may be relevant in sufficiently acidic systems. Theoretical studies
14a-c 

have 

shown that the most likely mechanism involves the formation of a Co
III

–H intermediate from 

protonation of the Co
I
-complex. One-electron reduction of the Co

III
–H species generates the 

Co
II
–H intermediate which reacts heterolytically with a proton to produce H2. Protonation at the 

oxime bridge (O–H---O) is known
14b

 to be possible in the Co
II
-complex in presence of a 

sufficiently strong acid (pKa ≤ 10.7 in acetonitrile). The resulting ligand-protonated Co
II
-

complex undergoes one-electron reduction followed by a protonation on the metal center giving 

rise to a ligand-protonated Co
III

–H complex which is an important species involved in the 

production of H2. In presence of a strong acid, p-cyanoanilinium (pKa = 7.6 in acetonitrile), the 

electrocatalytic wave of a cobalt oxime complex was observed at a potential of 320 mV more 

positive than that required for the Co
II
/Co

I
 reduction.

14d
 A pathway involving the protonation of 

the oxime bridge was proposed by Artero et al.
14d

 to be mechanistically relevant and could 

explain the observed potential shift. Support for the bimetallic mechanism for cobalt oximes has 

also been reported but without the presence of kinetic evidence. Evidence for the formation of a 

transient Co
III

–H complex has been reported
14e

 from the protonation of a Co
I
-triphos species and 

both the heterolytic and homolytic pathways were invoked for H2 generation. Scheme 4.3 

summarizes various pathways of proton reduction by cobalt oximes. Although the 

thermodynamics of these pathways are well-studied, there is little emphasis on the free energy 

barriers for the proton transfer and H2 production steps which are equally important in evaluating 

the likeliness of various mechanisms. 
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Scheme 4.3. Pathways for H2 evolution by cobalt oxime catalysts. Complexes of pathway I are 

reported to be mechanistically important.
11a,c

 The ligand-protonated pathways (II and III) have 

been demonstrated to be relevant in sufficiently acidic medium.
11b,d 

 

The potential calculated for the Co
II
/Co

I
 reduction for complex 4 is -1.25V versus the Fc/Fc

+
 

couple and the protonation of the oxime bridge in [Co
II
(
4-tBu

py)(HL
oxime

)]
+ 

species is found to be 

energetically unfavorable by 19.0 kcal/mol. This is consistent with a previous study
14b

 of a cobalt 

oxime catalyst where it was concluded that a weak acid like TFA cannot protonate the oxime 

moiety. The catalytic pathways proved for complex 4 are shown in Figure 4.31. The species 

obtained after the Co
II
/Co

I
 reduction, [Co

I
(
4-tBu

py)(HL
oxime

)], is a neutral complex and hence, can 

easily take up a proton by reacting with the acid, TFA. As the calculation shows, the protonation 

on the metal site is energetically favorable by 4.6 kcal/mol giving rise to [Co
III

(H)(
4-

tBu
py)(HL

oxime
)]

+
. This is expected since Co

I
 is a closed-shell 3d

8
 center and can behave as a good 

Lewis base. A PCET event is not invoked for the conversion of the Co
II
-complex to the Co

III
–H 

species as the electrocatalytic wave did not show any anodic shift with the decrease of the pH 

when compared to the reduction potential of the Co
II
/Co

I
 couple (Figure 4.29). The pKa of the 

[Co
III

(H)(
4-tBu

py)(HL
oxime

)]
+ 

species is calculated to be 6.7 from the acid dissociation reaction, 

[Co
III

(H)(
4-tBu

py)(HL
oxime

)]
+ 
 [Co

I
(
4-tBu

py)(HL
oxime

)] + H
+
, and the Co

III
–H complex should be 
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stable provided that pH < pKa (6.7). Figure 4.31a shows the catalytic pathway without 

considering the loss of the 
4-tBu

pyridine ligand. The reduction potential of the Co
III

–H/Co
II
–H 

couple is calculated to be more negative, -1.43V, than that of the Co
II
/Co

I
 couple while the PCET 

for the Co
I
/Co

II
–H couple is calculated to be -1.23V which is almost equal to the potential of the 

Co
II
/Co

I
 couple and hence, is more likely to occur than the Co

III
–H/Co

II
–H event. Protonation of 

the resulting [Co
II
(H)(

4-tBu
py)(HL

oxime
)] complex by TFA is significantly downhill by 31.4 

kcal/mol giving rise to the H2-adduct complex, [Co
II
(H2)(

4-tBu
py)(HL

oxime
)]

+
. Release of the 

dihydrogen is favorable by 8.7 kcal/mol and the resulting five-coordinate [Co
II
(
4-

tBu
py)(HL

oxime
)]

+
 can reenter the cycle.     

Figure 4.31. Various pathways considered for the evolution of H2 by complex 4 in presence of 

TFA (HA) in acetonitrile. a) The catalytic mechanism without considering the loss of the 
4-

tBu
pyridine ligand, b) the catalytic cycle invoking the ligand loss in the Co

II
–H complex. The 

pathways in cycle b are more likely than that in cycle a. The energetics of the chemical events 

are in kcal/mol calculated by B3PW91//TZVP/6-311++G(d,p) level of theory. 

 

The [Co
II
(H)(

4-tBu
py)(HL

oxime
)] complex is a 19-electron species and can loose the 

4-tBu
pyridine 
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ligand giving rise to the five-coordinate, 17-electron [Co
II
(H)(HL

oxime
)] intermediate. The loss of 

the ligand is favored by 15.5 kcal/mol. The catalytic pathway shown in Figure 4.31b considers 

that the reduction of [Co
III

(H)(
4-tBu

py)(HL
oxime

)]
+ 

complex to [Co
II
(H)(

4-tBu
py)(HL

oxime
)] is 

coupled with the loss of the 
4-tBu

pyridine ligand and the calculated potential for this event is                         

-0.76V. The PCET for the Co
I
/Co

II
–H event, when coupled with the loss of the ligand from the 

Co
II
–H species, is found to be -0.56V. Both of these calculated potentials are more positive 

compared to the calculated value (-1.25V) of the Co
II
/Co

I
 potential and hence, both of these 

processes can contribute to the mechanism. Generation of the H2-adduct complex, 

[Co
II
(H2)(HL

oxime
)]

+
, via the protonation of [Co

II
(H)(HL

oxime
)] species by TFA is energetically 

favorable by 20.7 kcal/mol. It requires a 
4-tBu

pyridine ligand to replace the dihydrogen from 

[Co
II
(H2)(HL

oxime
)]

+
 to obtain [Co

II
(
4-tBu

py)(HL
oxime

)]
+ 

species to restart the catalytic cycle. This 

substitution event is calculated to be favored by 3.8 kcal/mol. In order to map the kinetic barriers 

of the proton addition pathways to [Co
II
(H)(

4-tBu
py)(HL

oxime
)] and [Co

II
(H)(HL

oxime
)] complexes, 

we performed a relaxed scan for each complex where an external proton was approached to the 

hydride on the metal center from a distance of 3.0Å. Simulation of these pathways showed no 

barrier on the electronic energy surface for the formation of the H2-adduct complexes from 

[Co
II
(H)(

4-tBu
py)(HL

oxime
)] and [Co

II
(H)(HL

oxime
)] species and these results are in agreement with 

a previous study
14c

 on bis(dialkylglyoximate)-cobalt complexes. However, these proton addition 

events are disfavored by entropy and are expected to have kinetic barriers when free energies are 

considered. The activation energies will have an upper bound of 10 kcal/mol which results from 

the estimated loss of the translational entropy for a bimolecular reaction. Considering these low-

energy barriers and presence of excess of TFA in the medium, evolution of H2 from the reaction 

of the Co
II
–H complexes with the acid is very likely. However, considering the fact that the loss 
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of the axial ligand L’ from the six-coordinate [Co
II
(H)(L’)(HL

oxime
)] complex is a favorable 

process, the catalytic pathways shown in Figure 4.31b are more likely than the pathway in 

Figure 4.31a. The bimetallic pathway of H2 generation by the combination of two neutral 

[Co
II
(H)(HL

oxime
)] complexes is not likely because of presence of excess of protons compared to 

the Co-complex and low-energy barriers for the reactions of proton from TFA with [Co
II
(H)(

4-

tBu
py)(HL

oxime
)]

 
and [Co

II
(H)(HL

oxime
)] complexes. The bimetallic pathway requires two Co-

complexes to approach with the hydrides of the Co–H moieties facing each other and hence, is 

expected to have a moderate kinetic barrier.
14c 

4.4. Conclusions 

A series of homo- and heteroaxial complexes of Co
III

 in a oxime ligand framework were 

synthesized and characterized by multiple physico-chemical techniques. All of these complexes 

(1 - 6) exhibited excellent catalytic properties towards proton reduction (TFA as the proton 

source) with a low overpotentials and good turnover numbers. Variations of axial ligands affect 

both the overpotential and TONs, whereas the pyridine substitution does not affect the 

overpotentials but the TONs and kobs were greatly affected. Electrochemistry of heteroaxially 

substituted complexes exhibited complicated behavior with two Co
III

/Co
II
 and one Co

II
/Co

I
 

processes, the origin of which has been identified with multiple methods like CV, 
1
H-NMR, UV-

vis, EPR and DFT calculations. A detailed understanding of the electrochemical path with 

coordination preferences was revealed in CH3CN. The coordination environment of the active 

species for the catalysis was found to be five-coordinate with 
4-tBu

pyridine as the fifth ligand. 

Detailed catalytic mechanism of proton reduction was investigated for complex 4. Complexes 4-

6 favor the mechanism of hydrogen generation by heterolytic reaction of proton with Co
II
–H. We 

were also able to synthesize homoaxially substituted water-coordinated cobalt-oxime complex 
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(7) and its corresponding ruthenium analog (8). These two complexes were successfully 

characterized by various physico-chemical techniques. Both of these complexes were able to 

stabilize atleast doubly reduced species during electrochemical scan, and thus tested towards 

proton reduction activity in the presence of mild acid TFA with overpotential close to 0.35 V 

after three hours of experiment. Hydrogen generation was confirmed from bulk electrolysis 

experiment, and the corresponding TON and Faradaic efficiency was found close to 7.0 and 75% 

respectively, after one hour. Therefore, the heterometallic [Ru
II
Co

III
] complex retains the 

electrocatalytic activity in comparison with its cobalt module. The complex 8 exhibited brown 

color and absorbs between 400-500 nm in the visible region due to the strong MLCT transition 

from ruthenium center to bipyridine moieties. 

         To study electron transfer from the excited state of ruthenium to the acceptor cobalt, 

transient absorption (TA) spectroscopy was performed in CH3CN and CH3OH by exciting the 

complex at 500 nm. Excited state was found to be quenched by Co
III 

upon irradiation on Ru
II
. 

Future studies are aimed at the investigation of the photocatalytic proton reduction with complex 

8. The photocatalytic activity of this complex towards hydrogen production is under 

investigation in the collaboration with Dr. Karen Mulfort at Argonne National Laboratory. 
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CHAPTER 5 

DISTINCT PROTON AND WATER REDUCTION BEHAVIOR WITH A COBALT(III) 

ELECTROCATALYST BASED ON PENTADENTATE OXIMES 

 

Portions of the text in this chapter were reprinted or adapted with permission from:  Basu, D.; 

Mazumder, S.; Shi, X.; Staples, R.; Schlegel, H. B.*; Verani, C. N.* Angew. Chem. Int. Ed. 

2015, 54, DOI: 10.1002/anie.201501410. All rights to the work are retained by the authors and 

any reuse requires permission of the authors. 

5.1. Introduction 

Glyoxime-based Espenson catalysts have been investigated in great detail (chapter 4), and the 

catalytic Co
I
 state seems to favor a five-coordinate environment originated by axial coordination 

that stabilizes a low-spin 3d
8
 configuration required for nucleophillic attack on the proton.  

However important this five-coordinate species is, current catalyst designs are limited by the fact 

that the untethered axial ligand can dissociate easily contributing to sluggish electro and 

photocatalytic use and degradation of the molecular catalyst. Ergo, we hypothesize that rational 

ligand design should include pentadentate oxime species for the investigation of new catalyst 

frameworks. Moreover, such ligand design can be useful to address other relevant issues of 

glyoxime-based systems, namely, (i) the mechanisms of catalyst degradation in acidic media, 

and (ii) the quest for water-soluble systems. Conversion of the molecular catalyst into cobalt 

oxide nanoparticulates at the surface of the electrode has been reported for boron-capped cobalt 

glyoximes
1
 and  pyridyloximes

2
, whereas the most studied systems capable of generating H2 

from water  include bivalent and trivalent cobalt complexes of tetrapyridines,
3
 pentapyridines,

3
 

bis-bipyridines,
3
 and imino-pyridines.

3
  Our groups have shown that pentadentate [N2O3] ligands 

originally used with Fe
III

 in current rectification,
4
 can support cobalt complexes in catalytic 

proton reduction.
5
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Here we report on a pentadentate nitrogen-rich oxime ligand H2L
1
, its coordination to Co

II
 and 

water incorporation through one of the imine double bonds to form the water soluble catalytic 

species [Co
III

(HL
1
’)Cl]PF6 (1), shown in Scheme 5.1. Catalyst 1 presents distinct mechanisms of 

H2 generation in acidic organic media and in water. The results follow. 

 

 

 

 

 

 

 

Scheme 5.1. Cobalt(III) complex. 

 

5.2. Experimental 

5.2.1. X-ray structural determination 

An orange chunk crystal for 1 with dimensions 0.20 x 0.10 x 0.08 mm was mounted on a Nylon 

loop using very small amount of paratone oil. 

Data were collected using a Bruker CCD (charge coupled device) based diffractometer equipped 

with an Oxford Cryostream low-temperature apparatus operating at 173 K.  Data were measured 

using omega and phi scans of 1.0° per frame for 30 s. The total number of images was based on 

results from the program COSMO
6a

 where redundancy was expected to be 4.0 and completeness 

to 0.83 Å to 100%. Cell parameters were retrieved using APEX II software
6b

 and refined using 

SAINT on all observed reflections. Data reduction was performed using the SAINT software
6c

 

which corrects for Lp. Scaling and absorption corrections were applied using SADABS
6d

 multi-

1 
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scan technique, supplied by George Sheldrick.  The structures are solved by the direct method 

using the SHELXS-97 program and refined by least squares method on F
3
, SHELXL-97

6e
,
 
which 

are incorporated in OLEX2.
6f

    

 The structure was solved in the space group P21/c (# 14). All non-hydrogen atoms are 

refined anisotropically. Hydrogens were calculated by geometrical methods and refined as a 

riding model. All drawings are done at 50% ellipsoids. 

Table 5.1. Crystal Data for the complex 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 

Empirical formula C12H24ClCoF6N5O3P 

Formula weight 525.71 

Temperature (K) 173.01 

Wavelength (Å) 0.71073 

Crystal system, space group Monoclinic, P21/c 

a (Å) 14.9473(15) 

b (Å) 11.7925(12) 

c (Å) 11.1994(12) 

α (º) 90.00 

β (º) 90.00 

γ (º) 90.00 

Volume (Å
3
) 1974.1(4) 

Z 4 

Calculated density (Mg/m
3
) 1.769 

Absorption coefficient (mm
-1

) 9.600 

F (000) 1072.0 

R(F) (%) 6.99 

Rw(F) (%) 17.11 
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5.2.2. Computational methods 

All the calculations were performed using Density Functional Theory (DFT)
7a

 with a 

development version of Gaussian,
7b

 B3PW91 functional
7c-e

 with SDD basis set
7f

 on cobalt and 6-

31G(d,p)
7g,h 

basis on the other atoms. Solvation effects (in acetonitrile and acetone) were 

accounted for using the IEF polarizable continuum model (PCM)
7i-l

 solvation model and were 

included during structure optimization. Low spin states were found to be lower in energy for the 

metal complexes.  

5.2.3. Catalytic activity  

Proton reduction electrocatalysis was tested for 1 via cyclic voltammetry in presence of acetic 

acid (HOAc, pKa: 22.3 in CH3CN) with tetra-butyl ammonium tetrafluoroborate (TBABF4) as 

supporting electrolyte. For bulk electrolysis, the main chamber was filled with an electrolyte 

solution and proton source (TBABF4: 1.317 g; HOAc: 0.024 g [0.4 mmol], 20 mL acetonitrile) 

and the glass-fitted chamber was filled with another electrolyte solution (TBABF4: 0.329 g; 5 

mL acetonitrile). Bulk electrolysis was conducted with catalyst (0.004 mmol) in acetonitrile 

(CH3CN) for 180 minutes at -1.7 VAg/AgCl and the head space gas (100 μL) was injected into the 

GC to record the amount of dihydrogen produced. After the background subtraction, the turnover 

number was calculated as the ratio of the moles of dihydrogen produced over the moles of 

catalyst used. Faradaic efficiency was calculated from the gas chromatography measurements. 

For water reduction, similar procedure has been followed. For controlled potential experiment, 

the main chamber was filled with 20 mL of phosphate buffer solution whereas the glass-fitted 

chamber was filled with 5 mL of solution. Bulk electrolysis at -1.7 VAg/AgCl was applied for 

complex 1 to generate H2. The typical concentration of catalyst for water reduction experiment is 

0.0002 mmol.            
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5.2.4. Synthetic procedures 

The ligand H2L
1
 (1 mmol, 0.269 g) was dissolved in 36 mL acetone. CoCl2.6H2O (1 mmol, 0.238 

g) in water (2 mL) was added slowly to the acetone solution of the ligand. KPF6 (1.7 mmol, 

0.3128 g) in 2 mL water was added to the solution after 10 minutes. It was stirred at room 

temperature for 2-3 hours to ensure the completion of the reaction. After the reaction, the 

solution is rotary evaporated to 5 mL and poured into a crystallization flask. A yellowish-orange 

crystalline precipitate was obtained after 7-10 days. X-ray quality crystals were obtained from 

recrystallization with MeOH/H2O (2:1) mixture. Yield: 75 %. IR (KBr, cm
-1

) 3646 (w) (OH); 

3244 (m), 3127 (m) (NH); 2954 (w), 2921 (w) (aliphatic CH); 1621 (w) (C=N); 1453 (m) (C=C); 

832 (s) (PF6
-
).

 
ESI pos. in MeOH: m/z = 380.0900 for [Co

III
(

H2O
HL

1
)(Cl)]

+
. Anal. Calcd for 

M.H2O: C12H26ClCoF6N5O4P: C: 26.51; H: 4.82; N: 12.88; Found: C: 26.41; H: 4.39; N: 12.84. 

5.3. Results and discussions 

5.3.1. Syntheses and characterizations 

The ligand H2L
1
 was prepared by literature methods

8
 and contains one secondary amine along 

with two imine and two oxime nitrogen donor atoms. The redox-active and π-accepting nature of 

the imine and oxime moieties stabilize the monovalent cobalt responsible for catalytic activity. 

Moreover, the pentadentate and macrocyclic nature of H2L
1
 is expected to inhibit the lability of 

the N donor atoms. Reaction of the ligand with CoCl2.6H2O in acetone/water (9:1) yields 

complex 1 where a chloride occupies the sixth position (Figure 5.1) and water incorporation was 

observed through one of the imine bond.  

 

 

 



www.manaraa.com

163 
 

 
 

 

 

 

 

 

Figure 5.1. Synthesis of the cobalt(III) complex. 

Complex 1 was characterized by multiple spectroscopic and spectrometric methods, and by 

elemental analyses. The presence of a PF6
-
 counterion was confirmed with the observation of a 

broad peak in the FTIR spectra at 832 cm
-1

. The diamagnetic nature of the 
LS

3d
6
 1 was confirmed 

by the presence of sharp peaks in the 
1
H-NMR spectra. ESI-MS analysis confirmed the presence 

of the molecular ion species [Co
III

(HL
1
’)Cl]

+
 with m/z =  380.9000 in methanol (Figure 5.2). 

 

 

 

 

 

 

 

 

 

Figure 5.2. Experimental (bars) and simulated (line) isotopic distribution for the molecular ion 

of the complex 1 in CH3OH. 

Comparison between the pentadentate H2L
1
 and the tetradentate glyoxime analog (Figure 5.3) 

confirmed the former as susceptible to water addition; while water incorporation in the [N4] 

[M
+

]
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oxime is detrimental to the conjugated planar ligand framework and unfavorable by ca. 11 

kcal/mol. The decreased electronic communication between the imine moieties in H2L
1 

together 

with the formation of a strong OH---O hydrogen bonding of 1.727Å in the resulting aqua 

complex make this incorporation favorable by ca. 4 kcal/mol.     

 

 

 

 

 

 

 

 

 

 

Figure 5.3. DFT-calculated energetics of water addition to one of the imine moieties in 

tetradentate vs. pentadentate oxime complexes.   

 

5.3.2. Molecular structures 

Molecular structural information was gathered from X-ray quality crystals obtained by 

recrystallization from CH3OH/H2O (2:1). The structure of 1, shown in Figure 5.4, confirmed the 

distorted octahedral nature of the complex with a chlorido ligand occupying the sixth position. 

Incorporation of H2O is diagnostic of the newly formed C-O(H) and the lengthening of the C=N 

bond to C-N from ca. 1.30 to 1.48 Å. Bond-lengths and angles, along with crystallographic 

parameters are given in Tables 5.1. Two H-bonding interactions seem to be operative in the 

stabilization of the molecular structure. The newly incorporated OH forms an H-bond with the 
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formally deprotonated oxime O(3) atom, whereas the second H-bond is formed between the 

oxime O(1)H and the chloride ligand.  

 

Figure 5.4. The ORTEP representation of the cation of mononuclear [Co
III

(
H

2
O
HL

oxime
)(Cl)]PF6 

complex (1) at 50% ellipsoid probability. Bond lengths in Å: Co(1)-N(1): 1.925(7); Co(1)-N(2): 

1.949(6); Co(1)-N(3): 1.947(8); Co(1)-N(4): 1.865(6); Co(1)-N(5): 1.894(7); Co(1)-Cl(1): 

2.248(2); O(1)-N(1): 1.375(8); O(3)-N(5): 1.304(9). 

 

This particular orientation of atoms is the most stable thermodynamic configuration, as 

confirmed by DFT methods (Figure 5.5). 

. 
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Figure 5.5. Water addition probed to the different imine bonds in the pentadentate and 

tetradentate oxime complexes. All the water addition events to the pentadentate oxime complex 

shown in this figure are found to be higher in energy than that in Figure 5.3. In case of the 

tetradentate oxime, complex E is obtained by the addition of one water molecule to the imine 

function from a face opposite to the one probed in Figure 5.3 and species E is calculated to be 

higher in energy than the corresponding complex in Figure 5.3. 
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5.3.3. Electronic, electrochemical, and electrocatalytic properties 

5.3.3.1. Electronic properties 

Electronic spectroscopic studies were performed in CH3CN for the parent [Co
III

(HL
1
’)Cl]

+
 (1) 

species. The yellowish 
LS

3d
6
 parent species 1 shows an absorption band in the visible region at 

441 nm (ε = 627 M
-1

cm
-1

) originating from a d-d transition tentatively associated with the 
1
T2g(I) 


1
A1g(D) process of an ideal octahedral field (Figure 5.6, Table 5.2).  

 

 

 

  

 

 

 

 

 

 

Figure 5.6. UV-visible spectra for 1 (left to right as 10
-3

 M and 10
-5

 M) in CH3CN. 

 

Table 5.2. UV-visible parameters in CH3CN. 

 

 

 

5.3.3.2. Electrochemical and electrocatalytic properties 

Cyclic voltammetry (CV) was performed in CH3CN (Figure 5.7). Three quasi-reversible 

processes are observed at -0.75 VFc/Fc+ (ΔE = 0.12 V; ipc/ipa = 1.29), -1.68 VFc/Fc+ (ΔE = 0.10 V; 

ipc/ipa = 1.5), and -1.86 VFc/Fc+ (ΔE = 0.10 V; ipc/ipa = 1.4). The potentials of 1 were recorded in a 

  λ (nm) |ε (M
-1

cm
-1

)| λ (nm) |ε (M
-1

cm
-1

)| λ (nm) |ε (M
-1

cm
-1

)| λ (nm) |ε (M
-1

cm
-1

)| 

1            363 |1411| 441 |627|   

 1
-  472|1030| 583 |72| 671 |77| 

  1
2-  466|1623|   
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total of five different stock solutions and confirmed reproducibility of the data.  

       Catalytic proton reduction studies were performed in CH3CN by CV experiments in 

presence of various sources that included weak acids triethyl ammonium chloride (Et3NHCl, pKa 

= 18.7 in CH3CN) (Figure 5.7) and acetic acid (HOAc, pKa = 22.3 in CH3CN) (Figure 5.8). The 

H
+
/H2 catalytic peak was observed close to the second reduction process for the weak acids 

Et3NHCl and HOAc. Due to our interest in water reduction we focused our attention on the 

catalytic activity of 1 in presence of 0-5 equivalents of the weakest acid, HOAc. The catalytic 

peak becomes evident at potentials close to -1.50 V peaking at 5 equivalents of the acid, with 

clear formation of a gaseous product. The catalytic current reaches 130 μA after addition of 5 

equiv. of acid, and an overpotential of 0.24 V was observed after considering the 

homoconjugation effect.
9
  

 

 

 

 

 

 

 

 

Figure 5.7. Cyclic voltammetric experiment for hydrogen generation for 1 in the presence of 

triethyl ammonium chloride (Et3NHCl) in CH3CN (Glassy carbon (WE); Ag/AgCl (RE); Pt wire 

(AE); TBABF4 (SE)). 
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Figure 5.8. CV experiments for dihydrogen generation. The numbers 0-5 indicate the number of 

HOAc equivalents used in comparison to 1. Inset: Charge vs. time plot for 1 in comparison with 

an HOAc blank for 3 h during bulk-electrolysis. 

 

The fact that a lower overpotential is observed in presence of 1 with an associated higher 

catalytic current than that of the blank (Figure 5.9) validates the complex as the catalyst. 

 

 

 

 

 

 

 

 

 

    

 

Figure 5.9. Cyclic voltammetric experiment for hydrogen generation for blank in the presence of 

various acids in CH3CN. 
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Controlled potential electrolysis was performed at -1.7 VAg/AgCl to confirm the identity of the 

gaseous product as dihydrogen. Complex 1 consumes more charge than the blank during the 

bulk-electrolysis experiment (Figure 5.8 inset), supporting the complex as being responsible for 

catalysis. The turnover number (TON) in CH3CN for 1 was calculated at 14.7 after 3 h with 

Faradaic efficiency of 75% in presence of 100 equivalents of acid. The color of the solution 

remains unaltered and the corresponding post-catalysis UV-Visible spectrum under anaerobic 

conditions reveals peaks at 265 and 325 nm (Figure 5.10) in excellent agreement with the 

reduced 3d
7
 Co

II 
species (Figure 5.11) thus suggesting that the molecular catalyst is preserved 

and no nanoparticulate species are formed.  

 

 

 

 

 

 

Figure 5.10. UV-Visible spectra after electrocatalysis of 1 in the presence of HOAc in CH3CN at 

-1.7 VAg/AgCl. 

 

 

 

 

 

 

Figure 5.11. UV-Visible spectra of the Co
II
-species after bulk-electrolysis of 1 in CH3CN at         

-0.9 VAg/AgCl. 
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The DFT optimized geometries for 1 and its relevant reduced species is summarized in Figure 

5.12. The parent Co
III

-complex displays a pseudo-octahedral geometry with two hydrogen bonds, 

OH
….

O and OH
….

Cl. A 1e
-
 reduction yields a 

LS
3d

7
, Co

II
-complex, in which occupation of an 

antibonding eg*-like, Co-based 3dz2 orbital weakens the metal–ligand interactions along the z-

axis fostering an increase in the Co–Cl and Co–N  bond distances from 2.28 to 2.82 and 1.96 to 

2.20 Å, respectively. The OH
….

Cl interaction becomes stronger as the hydrogen bonding 

distance decreases from 2.09 in 1 to 1.98 Å in the Co
II
 species. Loss of chloride from the later 

complex requires ca. 6 kcal/mol. Further reduction of the Co
II
 complex affords the Co

I
 species, 

which is a five-coordinate complex with the metal center in a distorted square pyramidal 

environment. At nearly 4 Å from the metal center, the chloride is no longer part of the 

coordination sphere.    

 

 

 

 

 

  

 

 

 

 

Figure 5.12. DFT-calculated structures of the redox species generated in the electrochemical 

pathway in CH3CN. 

. 
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As seen in Figure 5.8, an anodic shift of about 180 mV was observed upon addition of acid to 1 

in CH3CN and the electrocatalytic peak was found at potentials close to -1.50 VFc/Fc+ whereas the 

Co
II
/Co

I
 process is observed at -1.68 VFc/Fc+ in absence of acid. DFT-calculations find that in 

presence of acid the addition of a proton on the Co
II
-species results in the loss of chloride as 

H
+
Cl

-
 giving rise to the five-coordiante cationic Co

II
-complex (Figure 5.12). The later species 

can subsequently get reduced to the corresponding Co
I
-complex. The reduction potentials of the 

[Co
II
(HL

1
’)]

+
/[Co

I
(HL

1
’)] and [Co

II
(HL

1
’)Cl]/[Co

I
(HL

1
’)Cl]

– 
couples are calculated to be -1.65 

VFc/Fc+ and -1.89 VFc/Fc+, respectively. Alternatively, a proton-coupled electron transfer (PCET) 

mechanism from [Co
II
(HL

1
’)Cl]  to Co

III
–hydride [Co

III
(H)(HL

1
’)] was considered without 

invoking chloride loss from the Co
II
-complex. The redox potential for the PCET Co

II
/Co

III
–H 

couple is calculated
10

 to be -1.55V, see supporting information for details. The anodic shift 

calculated by invoking chloride loss from the Co
II
-complex is 240 mV and is in better agreement 

with the experimental measurement of 180 mV while the shift in the potential calculated from 

the PCET mechanism is 340 mV and differs by 160 mV from the experiment. Moreover, a 

Co
II
/Co

I
 process is found in water at -1.25 VAg/AgCl (Figure 5.14) that supports the formation of a 

Co
I
-species and hence, a PCET mechanism does not seem viable under the conditions of our 

study.  The DFT-calculated catalytic mechanism of H2 generation by complex 1 in presence of 

acid in CH3CN is shown in Figure 5.13. The Co
III

–H complex can be reduced to a more reactive 

Co
II
–H species at a potential of -1.43 VFc/Fc+. Uptake of another proton and generation of H2 by 

this Co
II
–H complex is favorable by ca. 46 kcal/mol, regenerating the five-coordinate Co

II
-

complex to restart the catalytic cycle. The reaction of the proton with the Co
II
–H species is 

expected to be activationless.
10 

Homolytic coupling of the two Co
II
–H species is calculated to be 

unfavorable compared to the heterolytic mechanism by ca. 32 kcal/mol. 
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Figure 5.13. Catalytic mechanism of H2 generation by complex 1 in CH3CN. Energetics reported 

as free energy changes in kcal/mol. 

 

Complex 1 is water soluble due to the presence of various polar groups such as —NH and —OH. 

Thus, cyclic voltammetric experiments were performed to study the viability of 1 as 

electrocatalyst for neutral water (pH = 7) reduction in presence of phosphate buffer using a 

mercury pool electrocell. We observed a peak at -1.25 VAg/AgCl, which corresponds to the 

Co
II
/Co

I 
process, followed by a sharp increase of current from -1.30 VAg/AgCl. This sharp peak is 

assigned to the catalytic peak for H2 evolution, and an onset overpotential of 0.65 V was 

calculated for this system. This result is relevant when compared to the blank experiment in 

absence of 1 where dihydrogen is generated at -1.90 VAg/AgCl, ergo, at a much more negative 

potential (Figure 5.14). This result validates 1 as water reduction catalyst with an observed low 

onset overpotential similar to other documented water reduction catalysts. Bulk electrolysis was 

performed at -1.7 VAg/AgCl during 3 h in order to confirm the presence of dihydrogen. A TON of 

950 was calculated after 3 h with Faradaic efficiency of 95%. The activity of the catalyst was 
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assessed by performing an extended controlled potential experiment for 18 h at -1.7 VAg/AgCl and 

pH 7. As indicated in Figure 5.14 inset a linear charge buildup indicative of continued catalysis 

was observed over time associated with 5680 TONs and Faradaic efficiency of 95%. All the 

catalytic parameters are summarized in Table 5.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. CV experiments for H2 generation in water/phosphate buffer (pH: 7): Blank vs. 1 

(Inset: Plot of charge vs. time in the bulk electrolysis experiment for 1 at -1.7 V vs. Ag/AgCl for 

18 h). 

 

Table 5.3. Catalytic parameters in HOAc and water for 1 (bulk electrolysis (BE): Applied 

potential (AP): -1.7 VAg/AgCl with HOAc; AP: -1.7 VAg/AgCl with water/phosphate buffer (pH: 7). 

 

Parameters (HOAc)  (H2O) 

Overpotential (V) (10 eq. HOAc) 

Overpotential (H2O) (10 mL 1M buffer) 

0.24 0.65 

TON/3h (4.0 X 10
-6

 mol) (100 eq HOAc) 

TON/3h (2.0 X 10
-7

 mol) (H2O, 20 mL 1M buffer) 

14.7 950 

Faradaic efficiency 75     95 

 



www.manaraa.com

175 
 

 
 

The actual overpotential of this complex was determined by controlled potential electrolysis at 

different potentials using mercury pool as the working electrode in water with pH 7 phosphate 

buffers. The overpotentials were applied over a period of 60 s and altered from 450 to 950 mV to 

determine the rate of H2 production. The total consumption of charge was negligible below 550 

mV (Figure 5.15), whereas at more negative potentials the charge increased linearly over time. 

Moreover, the charge vs. overpotential plot (Figure 5.15 inset) clearly indicates the consumption 

of charge started increasing consistently after an overpotential of 650 mV concomitant with the 

generation of bubbles. Therefore, the onset and actual overpotentials resides at close proximity. 

Interestingly, this overpotential is very close the electrochemical potential involved with the 

Co
II
/Co

I
 process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15. Charge vs. time plot during controlled potential experiments at different 

overpotentials (inset: charge at 60 s vs. overpotential plot). 

 

 

During the extended bulk-electrolysis shown in Figure 5.14 inset an approximate tenfold more 

charge (270 vs. 25 µA) was consumed than in the blank experiment, thus leading to the 

indication that 1 is responsible for catalysis. However, the UV-visible spectra of the post-
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(a) 

(b) 

(c) 

catalysis solution was measured after bulk-electrolysis at -1.25, -1.40, and -1.70 VAg/AgCl (Figure 

5.16) as a means to probe the resilience of the catalyst. As we observed spectral changes, the 

nature of the catalytic events was thoroughly investigated. Electrolysis for 1 h at -1.25 VAg/AgCl 

resulted in some degree of color change from deep to pale yellow with the corresponding 

intensities of the UV-visible peaks being reduced by ca. 40% (Figure 5.16a). The near-complete 

disappearance of the UV-visible bands at ca. 95% was observed after 1 h electrolysis at -1.40 

and -1.70 VAg/AgCl (Figures 5.16b,c). As the catalytic activity was maintained, this was 

suggestive of possible formation of nanoparticulates.
1
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. UV-Visible spectra of 1 before and after electrocatalysis for one hour in the 

presence of water/phosphate buffer (pH: 7) at (a) -1.25, (b) -1.4, and (c) -1.7 VAg/AgCl. 
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Moreover, the charge consumption increased upon application of more negative potentials 

(Figure 5.17).  

 

 

 

 

 

 

Figure 5.17. Charge versus time plot for 1 in the presence of water/phosphate buffer (pH: 7) at -

1.25, -1.4, and -1.7 VAg/AgCl. 

 

Nanoparticle formation was further probed by performing a “rinse” experiment in water at pH 7: 

A glassy carbon electrode was used in water in the presence of 1 and scanned to -1.7 VAg/AgCl 

followed by extensive rinsing and dipping into a freshly prepared solution with no complex. A 

catalytic peak appeared around -1.15 VAg/AgCl, thus before the potential peak observed for the 

bare electrode (Figure 5.18), and implying that nanoparticle deposition on the surface of the 

electrode enables water reduction. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18. CV experiment to assess nanoparticle formation. 
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Further confirmation of nanoparticle formation was obtained via scanning electron microscopy 

(SEM) analyses of a graphoil working electrode before and after bulk-electrolysis in water at -

1.45 and -1.70 VAg/AgCl. The SEM images shown in Figure 5.19 clearly indicate the formation of 

cobalt-based nanoparticle with a size distribution between 80-300 nm. Similar observations were 

described in recent studies with cobalt and nickel-based oxime complexes.
1,2,11

 Although the 

composition of these nanoparticles is unknown, the ligand architecture was proposed to be 

crucial in the nanoparticle activity.
12 

Figure 5.19. SEM images of the graphoil electrode: (a) bare, before electrolysis; with deposited 

particles after bulk electrolysis at (b) -1.45 VAg/AgCl  and (c) -1.70 VAg/AgCl. 

 

In order to gain more insight into the catalyst decomposition process in water, we have 

considered the hydrolysis of the imine bonds in the Co
II
- and Co

I
-complexes. The later species is 

found to be more susceptible to water incorporation.
1
 Addition of a water molecule to the Co

I
-

complex is found to be energetically uphill by only 6 kcal/mol (Figure 5.20) and is feasible in 

presence of a large excess of water. Moreover, the acid strength of the C=N(OH) function is 

expected to be greater in more polar aqueous solvent than in acetonitrile and as a result, a greater 

fraction of the deprotonated form C=N(O
–
) is present in water than in acetonitrile (Figure 5.21). 

Incorporation of a water molecule into the imine bond of this deprotonated ligand backbone is 

significantly favorable by about 21 kcal/mol (Figure 5.20). These results indicate a number of 

 

(a) (b) (c) 
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plausible pathways that can lead to catalyst decomposition and subsequent nanoparticle 

formation in water and are in agreement with a recent study
1,2,11 

of formation of Co-nanoparticle 

H2 evolution catalyst by the use of inorganic cobalt salt in neutral water. A detailed study of the 

mechanism of catalyst decomposition and nanoparticle formation is currently underway. 

 

 

 

 

 

 

 

Figure 5.20. Plausible pathways for the decomposition of the catalyst in water: hydrolysis of the 

imine bond on the oxime ligand of the Co
I
-complex. The energetics is reported as free energy 

changes in kcal/mol. 

 

 

 

 

 

 

 

Figure 5.21. The acid-base equilibrium considered for the Co
I
-complex. 
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5.4. Conclusions 

In conclusion, a new proton reduction catalyst, a Co
III

 complex with pentadentate oxime, was 

synthesized and thoroughly characterized by multiple physico-chemical techniques. 

Thermodynamically favorable water incorporation was observed through one of the imine bonds, 

whereas two OH
….

O and OH
….

Cl hydrogen bonding interactions seem to stabilize the resulting 

molecular structure. This water-compatible complex exhibited excellent catalytic activity 

towards weak acids such as acetic acid in CH3CN with TON of 14.7 in 3 h and overpotential of 

0.24 V. The calculated catalytic mechanism suggests a heterolytic pathway for H2 evolution from 

the protonation of the Co
II
–H intermediate generated in situ. Protonation on the chloride of 

[Co
II
(HL

1
’)Cl] leads to the formation of a cationic [Co

II
(HL

1
’)]

+
 complex that undergoes 

reduction at a potential 240 mV more positive compared to its neutral counterpart, 

[Co
II
(HL

1
’)Cl]. This phenomenon is consistent with the anodic shift observed experimentally for 

1 in presence of acid. The result suggests that the use of pentadentate oxime ligands precludes 

nanoparticule formation observed for glyoxime-based catalysts in acidic media and Co-hydride 

formation is favored. Excellent catalytic activity was observed in water with a TON of 5680 after 

18 h and overpotential of  0.65 V. This activity is, however, attributed to the formation of cobalt-

based nanoparticles resulting from the decomposition of 1 due to the plausible incorporation of 

water molecule into the imine bond of the ligand.   
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1. Anxolabéhère-Mallart, E.; Costentin, C.; Fournier, M.; Nowak, S.; Robert, M.; Savéant, 
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CHAPTER 6 

LIGAND TRANSFORMATIONS AND EFFICIENT PROTON/WATER REDUCTION 

WITH COBALT CATALYSTS BASED ON PENTADENTATE PYRIDINE-RICH 

ENVIRONMENTS 

 

Portions of the text in this chapter were reprinted or adapted with permission from: Basu, D.; 

Mazumder, S.; Shi, X.; Baydoun, H.; Niklas, J.;
 
Poluektov, O.; Schlegel, H. B.*; Verani, C. N.* 

Angew. Chem. Int. Ed. 2015, 54, 2105. All rights to the work are retained by the authors and any 

reuse requires permission of the authors. 

6.1. Introduction 

Pentadenate nitrogen-rich ligands are known to stabilize lower oxidation state of the cobalt, 

which can act as proton/water reduction catalysts.
1
 Recent results point out the importance of 

cobalt complexes of pyridine-containing ligands in proton reduction, where complexes of imino-, 

di-, tetra- and pentapyridine ligands have been investigated.
1
 Several of these systems are also 

water-soluble, and therefore relevant for direct water reduction. 

    The Verani group has a long-standing interest in redox-active phenylenediamine-bridged 

pentadentate [N2O3] ligands capable of forming stable first-row transition metal complexes.
2
 

Thus far we emphasized phenolate-rich environments, and observed a facile conversion from the 

secondary amine to imine. While Fe
III

 species with this ligand environment have been used in 

current rectifying devices,
2e,f

 Co
III 

complexes of this nature are electrocatalysts for proton 

reduction in trifluoroacetic acid/MeCN.
2g

 However, these species have intrinsic negative 

overpotentials, and we hypothesized that similar [N2N
py

3] pentadentate pyridine-rich 

environments would yield affordable catalysis and water solubility. Such systems allow the 

proton to bind to the sixth position of the metal in a framework that is potentially redox-active 

and π-acceptor, thus contributing to the stabilization of the Co
I
 state.  
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    Thus, we synthesized a series of Co(III)/Co(II) complexes based on pentadentate 

phenylenediamine bridged tris-pyridine [N2N
py

3] type ligands (Scheme 6.1), and their respective 

redox, electronic, catalytic, and mechanistic properties were thoroughly investigated towards 

proton reduction. A ligand centered reactivity was observed in the ligand framework for the N-H 

containing ligand (HL
1
). Therefore, a methyl group was incorporated in the ligand framework 

(MeL
2
) to inhibit this kind of insertion. There are a few complexes in this series which are both 

robust and water soluble, and have been tested towards water reduction activity. 

Scheme 6.1. Cobalt complexes of pyridine-rich ligands. 

 

6.2. Experimental 

6.2.1. X-ray structural determination 

All the data were collected on a Bruker APEX-II Kappa geometry diffractometer with Mo 

radiation and a graphite monochromator using a Bruker CCD (charge coupled device) based 

diffractometer equipped with an Oxford Cryostream low-temperature apparatus.  The data was 

measured at a temperature of 100 K. The structures were solved by the direct method using the 

SHELXS-97 program which is part of APEX II
3a

 and refined by least squares method on F
3
, 

SHELXL-97,
3b  

which is incorporated in OLEX2.
3c 

All hydrogen atoms were placed at calculated 

positions.                                                                                                                                                  
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      Single crystals of 2: one molecule of 2, two perchlorate counter ion, one water molecule, and 

one methanol molecule were found in the asymmetric unit. The structure was solved with a 

resolution of 0.74 Å in space group P21. All non-hydrogen atoms were refined anisotropically. 

       Single crystals of 3: one molecule of 3, one perchlorate counter ion, and one methanol 

molecule were found in the asymmetric unit. The structure was solved with a resolution of 0.85 

Å in space group P-1. All non-hydrogen atoms were refined anisotropically. Carbon C25 of the 

methanol molecule was at the corner of the asymmetric unit cell, therefore it was not possible to 

place hydrogen atoms at calculated positions for that atom. 

       Single crystals of 4: one molecule of 4 and one perchlorate counter ion were found in the 

assymetric unit. The structure was solved with a resolution of 0.82 Å in space group Pna21. All 

non-hydrogen atoms were refined anisotropically, however the perchlorate counter ion was 

found to be disordered, as such partial occupancies for O3 and O4 had to be assigned. 

        Single crystals of 5: Two molecules of 5 and two perchlorate counter ions were found in the 

asymmetric unit. The structure was solved with a resolution of 0.76 Å in space group P21/C. All 

non-hydrogen atoms were refined anisotropically. 

Table 6.1. Important bond lengths for 2 – 5. 

2 3 4                5 

Co1-N2    1.947(7) Co1-N2    1.945(3) Co1-N1    1.949(3) Co1-N1    2.2027(16) 

Co1-N3    1.898(7) Co1-N3    1.941(3) Co1-N2    1.949(2) Co1-N2    2.1862(15) 

Co1-N4    1.943(7) Co1-N4    1.924(3) Co1-N3    1.883(2) Co1-N3    2.1429(16) 

Co1-N5    1.948(7) Co1-N5    1.884(3) Co1-N4    1.944(2) Co1-N4    2.1000(16) 

Co1-N20    1.927(6) Co1-N6    1.923(3) Co1-N5    1.942(2) Co1-N5    2.2094(16) 

Co1-Cl1    2.253(3) Co1-Cl2    2.2827(10) Co1-Cl1    2.2589(8) Co1-Cl1    2.3307(5) 

N3-C5      1.280(11) N5-C26     1.416(5) N3-C9     1.350(4) N1-C19    1.483(2) 

N4-C8    1.517(10) N2-C11   1.501(5) N2-C6     1.502(4) N2-C7      1.488(2) 

N4-C17    1.521(10) N2-C5   1.496(5) N2-C19      1.502(4) N2-C13   1.485(2) 

   C9-O1    1.233(3)  
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Table 6.2. Important crystallographic parameters for 2 – 5. 

 

6.2.2. Computational methods  

All the calculations were performed using Density Functional Theory (DFT)
4a

 with a 

development version of Gaussian,
4b

 using B3LYP
4c,d

 functional with SDD basis set
4e

 on cobalt 

and 6-31G(d,p)
4f,g 

basis on the other atoms. All the optimized structures were confirmed as 

minima by analyzing the harmonic vibrational frequencies. Solvation effects (in acetonitrile and 

methanol) were accounted for using the implicit SMD
4h 

continuum solvation model and were 

included during structure optimization. Wave functions were tested for self-consistent field 

stability.
4i-k

 Isosurface plots of spin densities were visualized using GaussView.
4l 

 The literature 

value
4m

 of -266.5 kcal/mol is used for the free energy of proton in acetonitrile solution. The 

calculation of the reduction potentials of the complexes included zero-point energy and thermal 

corrections and standard thermodynamic equation ∆G = -nFE was used. The calculated 

 2 3                4 5 

Empirical formula C25H27Cl3CoN5O10 C25.5H25Cl2CoN5O6 C24H20Cl2CoN5O5 C50H50Cl4Co2N10O8 

Formula weight 722.80 627.35 589.29 1178.66 

Temperature (K) 100 100.1 100.1 100.1 

Wavelength (Å) 0.71073 0.71073 0.71073 0.71073 

Crystal system, space group Monoclinic, P21 Triclinic, P-1 Orthorhombic, Pna21 Monoclinic,  P21/c 

a (Å) 10.014(10) 8.8179(7) 18.9149(14) 22.1651(12) 

b (Å) 15.255(18) 9.8101(7) 14.3671(11) 13.9135(6) 

c (Å) 10.462(10) 15.1228(12) 8.8288(6) 16.2600(9) 

α (º) 90 101.482(4) 90 90 

β (º) 115.626(14) 94.105(4) 90 90.159(2) 

γ (º) 90 90.908(4) 90 90 

Volume (Å
3
) 1441(3) 1278.11(17) 2399.2(3) 5014.5(4) 

Z 2 2 4 4 

Calculated density (Mg/m
3
) 1.666 1.630 1.631 1.561 

Absorption coefficient (mm
-1

) 0.940 0.934 0.986 0.941 

F (000) 740 645.6 1204.0 2424.0 

R(F) (%) 7.06 5.24 3.38 3.30 

Rw(F) (%) 12.93 6.26 3.95 4.81 
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potentials were referenced to a calculated value of E1/2 = 4.043 V for the ferrocene/ferrocenium 

couple under our level of theory. 

6.2.3. Electron paramagnetic resonance (EPR) spectra measurement 

All samples were prepared under a nitrogen atmosphere. A 10
-3

 M solution of complex 5 was 

filled in suprasil quartz capillaries with 4 mm outer diameter and frozen in liquid nitrogen. 

Continuous wave (cw) X-band (9-10 GHz) EPR experiments were carried out with a Bruker 

ELEXSYS E580 EPR spectrometer (Bruker Biospin, Rheinstetten, Germany), equipped with a 

Bruker ER 4102ST resonator or a Bruker ER 4122SHQ resonator.  The temperature was 

controlled using a helium gas-flow cryostat (ICE Oxford, UK) and an ITC (Oxford Instruments, 

UK).  Data processing was done using Xepr (Bruker BioSpin, Rheinstetten) and Matlab 7.11.2 

(The MathWorks, Inc., Natick) environment. Simulations were performed using the EasySpin 

software package (version 4.5.5).
5 

6.2.4. Catalytic activity  

Proton reduction electrocatalysis was tested for 4 and 5 via cyclic voltammetry in presence of 

acetic acid (HOAc, pKa: 22.3 in CH3CN) with tetra-butyl ammonium hexafluorophosphate 

(TBAPF6) as supporting electrolyte. For bulk electrolysis, the main chamber was filled with an 

electrolyte solution and proton source (TBAPF6: 1.56 g; HOAc: 0.024 g [0.4 mmol], 20 mL 

acetonitrile) and the glass-fitted chamber was filled with another electrolyte solution (TBABF4: 

0.39 g; 5 mL acetonitrile). Bulk electrolysis was conducted with catalyst (0.004 mmol) in 

acetonitrile (CH3CN) for 180 minutes at -1.7 VAg/AgCl and the head space gas (100 μL) was 

injected into the GC to record the amount of dihydrogen produced. After the background 

subtraction, the turnover number was calculated as the ratio of the moles of dihydrogen produced 

over the moles of catalyst used. Faradaic efficiency was calculated from the gas chromatography 
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measurements. For water reduction, similar procedure has been followed. For controlled 

potential experiment, the main chamber was filled with 20 mL of phosphate buffer solution 

whereas the glass-fitted chamber was filled with 5 mL of solution. Bulk electrolysis at -1.7 

VAg/AgCl was applied for complex 1 to generate H2. The typical concentration of catalyst for water 

reduction experiment is 0.0002 mmol.                                                                                                                                           

6.2.5. Synthetic procedures 

Syntheses: Ligand HL
1 

was synthesized as per literature procedure.
6
  

MeL
2
 was synthesized by following the same procedure however using N-methyl-1,2-phenylene 

diamine (3 mmol, 0.366 g) instead of 1,2-phenylenediamine. The final product was extracted to 

dichloromethane layer from water followed by column chromatography with neutral alumina in 

the presence of dichloromethane (CH2Cl2): ethyl acetate (EtOAc) (1:1) mixture. The 2
nd

 fraction 

obtained after column was rotary evaporated to dryness and dried under vaccum.  

Yield: 40 %. IR (KBr, cm
-1

) 3052 (w), 3007 (w) (Aromatic-CH); 2992 (w), 2954 (w), 2878 (w), 

2839 (w) (aliphatic CH); 1589 (s) (C=N); 1432 (s) (C=C).
 1

H-NMR [400MHz, CDCl3, 300K] 

δ/ppm = 2.863 [s, 3H (CH3)]; 4.665 [s, 4H (CH2)]; 4.737 [s, 2H (CH2)]; 6.884 [d, 1H (aryl)];  

6.948 [q, 2H (aryl)]; 7.018 [d, 1H (aryl)]; 7.115 [t, 3H (aryl)]; 7.199 [d, 3H (aryl)]; 7.511 [t, 3H 

(aryl)]; 8.5 [d, 2H (aryl)]; 8.552 [d, 1H (aryl)]. ESI pos. in MeOH: m/z = 396.2 for [MeL
2
 +H

+
]

+
. 

Complex syntheses (1 - 4): Method (a) HL
1
 (1 mmol, 0.381 g) was dissolved in 20 mL methanol. 

CoCl2.6H2O (1 mmol, 0.238 g) in 5 mL methanol was added dropwise to the solution. The 

solution turns pinkish (Complex (1)) and was stirred for 2-3 hours, where the solution then turns 

greenish. Dry oxygen gas was purged through the solution for 30 minutes. Anhydrous NaClO4 (4 

mmol, 0.488 g) in 5 mL methanol was added to the solution and stirred for 1-2 hours. After the 

reaction, the volume of solution was reduced to 5 mL. A mixture of orange (2) and green (3) 
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crystals were obtained after 2-3 days. Brownish yellow crystals of complex (4) was formed after 

5-7 days if we keep the crystals a long time in solution or recrystallize it from EtOH/acetone 

(1:1) or CH3CN/diethyl ether (1:1) mixture.  

Method (b) HL
1
 (1 mmol, 0.381 g) was dissolved in 20 mL acetone. CoCl2.6H2O (1 mmol, 0.238 

g) in 7 mL acetone was added dropwise to the solution. The solution turns pink (Complex (1)) 

and was stirred for 2-3 hours. The solution turns greenish brown. Dry oxygen gas purged through 

the solution for 30 minutes. Anhydrous NaClO4 (4 mmol, 0.488 g) in water (3 mL) was added to 

the solution and further stirred for 1-2 hours. After the reaction, the volume of solution was 

reduced to 5 mL. Brownish yellow crystals of (4) were obtained after few days. 

Complex (1): Yield: 75 %. IR (KBr, cm
-1

) 3154 (w) (NH); 3105 (w) (Aromatic-CH); 2922 (w) 

(aliphatic CH); 1607 (m) (C=N); 1435 (m) (C=C); 1094 (s) (ClO4
-
).

 
Anal. Calcd for 1.H2O: 

C24H25Cl2CoN5O5: C: 48.58; H: 4.25; N: 11.80; Found: C: 48.76; H: 4.12; N: 11.32. 

Complex (2): X-ray quality crystals were obtained from MeOH. It was further recrystallized 

from EtOH to generate purified product in one day. Yield: 45 %. IR (KBr, cm
-1

) 3099 (w), 3033 

(w) (Aromatic-CH); 2934 (w) (aliphatic CH); 1607 (m) (C=N); 1444 (m) (C=C); 1092 (s)     

(ClO4
-
).

 1
H-NMR [400MHz, CD3CN, 300K] δ/ppm = 5.230 [d, 2H (CH2)]; 5.885 [d, 2H (CH2)]; 

6.881 [d, 2H (aryl)]; 7.337 [t, 2H (aryl)]; 7.536 [d, 2H (aryl)]; 7.628 [t, 1H (aryl)]; 7.874 [t, 2H 

(aryl)]; 7.976 [t, 2H (aryl)]; 8.282 [t, 1H (aryl)]; 8.374 [d, 1H (aryl)]; 8.679 [d, 1H (aryl)]; 8.745 

[t, 1H (aryl)]; 9.041 [s, 1H (N=CH)]; 9,665 [d, 1H (aryl)]. ESI pos. in MeOH: m/z = 473.0818 

for [Co
III

(L'
1
)(Cl)]

+
. Anal. Calcd for 2.CH3CH2OH: C26H27Cl3CoN5O9: C: 43.44; H: 3.79; N: 

9.74; Found: C: 43.94; H: 3.74; N: 9.44. 

Complex (3): X-ray quality crystals were obtained from MeOH. Yield: 45 %. IR (KBr, cm
-1

) 

3077 (w) (Aromatic-CH); 2976 (w), 2940 (w), 2819 (w) (aliphatic CH); 1615 (m) (C=N); 1435 
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(w) (C=C); 1092 (s) (ClO4
-
).

 
ESI pos. in MeOH: m/z = 504.1004 for [Co

III
(

OMe
L'

1
)(Cl)]

+
. Anal. 

Calcd for 3.H2O: C25H26Cl2CoN5O6: C: 48.25; H: 4.21; N: 11.25; Found: C: 48.22; H: 4.19; N: 

11.50. 

Complex (4): X-ray quality crystals were obtained from CH3CN/diethyl ether (1:1). Yield: 70 %. 

IR (KBr, cm
-1

) 3119 (w), 3084 (w), 3041 (w) (Aromatic-CH); 2940 (w) (aliphatic CH); 1650 (s) 

(C=O); 1600 (s) (C=N); 1450 (m) (C=C); 1092 (s) (ClO4
-
).

 1
H-NMR [400MHz, CD3CN, 300K] 

δ/ppm = 5.150 [d, 2H (CH2)]; 5.882 [d, 2H (CH2)]; 6.837 [d, 2H (aryl)]; 7.254 [t, 4H (aryl)]; 

7.444 [d, 2H (aryl)]; 7.880 [t, 2H (aryl)]; 8.032 [t, 1H (aryl)]; 8.110 [t, 1H (aryl)]; 8.840 [d, 1H 

(aryl)]; 8.574 [t, 1H (aryl)]; 8.653 [m, 1H (aryl)]; 9.822 [d, 1H (aryl)]. ESI pos. in MeOH: m/z = 

488.0688 for [Co
III

(
C=O

L'1)(Cl)]
+
. Anal. Calcd for 4.2H2O: C24H24Cl2CoN5O7: C: 46.17; H: 3.87; 

N: 11.22; Found: C: 45.77; H: 3.46; N: 10.91. 

Complex (5): MeL
2
 (1 mmol, 0.395 g) was dissolved in 20 mL methanol. CoCl2.6H2O (1 mmol, 

0.238 g) in 5 mL methanol was added dropwise to the solution. The solution turns pinkish and 

was stirred for 2-3 hours. Dry oxygen gas purged through the solution for 30 minutes. 

Anhydrous NaClO4 (4 mmol, 0.488 g) in 5 mL methanol was added to the solution and further 

stirred for 1-2 hours. After the reaction, the volume of solution was reduced to 5 mL. A pinkish 

colored X-ray quality crystals were obtained after few days. Yield: 90 %. IR (KBr, cm
-1

) 3069 

(w); 3034 (w) (Aromatic-CH); 3004 (w), 2970 (w), 2941 (w) (aliphatic CH); 1607 (s) (C=N); 

1450 (s) (C=C); 1098 (s) (ClO4
-
).

 
ESI pos. in MeOH: m/z = 489.1130 for [Co

II
(MeL

2
)(Cl)]

+
. 

Anal. Calcd for 5.H2O: C25H27Cl2CoN5O5: C: 49.44; H: 4.48; N: 11.53; Found: C: 49.76; H: 

4.19; N: 11.56. 
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6.3. Results and discussions 

6.3.1. Syntheses and characterizations 

The [N2N
py

3] ligand L
1H

 was obtained by treatment of phenylenediamine with picolyl chloride in 

water and in the presence of sodium hydroxide and hexadecyl trimethyl ammonium chloride.
6
 

The purified ligand was treated with CoCl2.6H2O in methanol under aerobic conditions for 3 h 

and followed by counterion exchange with NaClO4. An initial pink solution containing 

[Co
II
(L

1H
)Cl]

2+
 turned greenish within minutes and yielded a crystalline mixture of an orange 

[Co
III

(L
1C=N

)Cl](ClO4)2 (2) and a green [Co
III

(L
1OMe

)Cl] ClO4 (3) species after 2 days (Scheme 

6.2). When the mother liquor was allowed to stand for 5-7 days, light-orange crystals of 

[Co
III

(L
1C=O

)Cl]ClO4 (4) were obtained. Identeical results were obtained by recrystallizing the 

mixture of 2 and 3 from either MeCN/diethyl ether (1:1) or ethanol/acetone (1:1). Furthermore, 

species 4 can be generated directly upon complexation of L
1H

 and CoCl2.6H2O in acetone/water 

(1:1) at RT after 5-7 days under aerobic condition. 
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                            Scheme 6.2. Synthetic scheme of cobalt complexes 1, 2, 3, and 4.                                        

 

Complexes 1-4 have been characterized spectroscopically by FT-infrared, and 
1
H-NMR methods 

(for 2-4) as well as by ESI mass spectrometry and elemental analyses. The presence of 

perchlorate counterion was confirmed for 2-4 from the very broad peak in the FTIR spectra at 

1090 cm
-1

. Well-defined and sharp peaks in the 
1
H-NMR spectra in CD3CN confirm the 

diamagnetic nature (3d
6
 

LS
Co

III
) of these complexes (2-4). The 

1
H-NMR spectra of selected 

complexes are shown in Figure 6.1. ESI-Mass spectra exhibited molecular ion peaks for 

complexes 2-4 in methanol (Figure 6.2) 
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Figure 6.1. 
1
H-NMR spectra of 2 and 4 (top to bottom) in CD3CN. 

 

 

 

 

 

 

 

 

Figure 6.2. Experimental (bars) and simulated (line) isotopic distribution for the molecular ions 

of the complexes 2 ([Co
III

(L'
1
)(Cl)]

+
), 3 ([Co

III
(

OMe
L'

1
)(Cl)]

+
), and 4 ([Co

III
(

C=O
L'1)(Cl)]

+
) (left to 

right) in CH3OH. 
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In order to prevent the initial oxidation of L
1H 

into its imine counterpart, an N-methylamine 

derivative ligand L
2
 was designed. Synthesis of the ligand was performed by the reaction of N-

methyl phenylenediamine with picolyl chloride in the presence of NaOH and hexadecyl 

trimethyl ammonium chloride (Figure 6.3). The corresponding 
1
H-NMR spectra of the ligand in 

CDCl3 is shown in Figure 6.3. 

 

Figure 6.3. Synthesis of the ligand MeL
2
 and its 

1
H-NMR spectra in CDCl3. 

 

This new ligand allowed for the complexation of a 3d
7
 Co

II
 from CoCl2.6H2O in methanol under 

aerobic conditions without the previously observed oxidation to imine. The pinkish colored 

[Co
II
(L

2
)Cl]ClO4 (5) was isolated by counterion exchange with NaClO4 after 2 h (Figure 6.4).   
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Figure 6.4. Synthetic Scheme for Co
II 

complex 5 and its ORTEP representation at 50% ellipsoid 

probability. 

 

The complex was also characterized by FTIR, ESI-MS, and elemental analysis. FTIR spectra 

exhibited broad peak at 1098 cm
-1

 due to the presence of ClO4
-
 counterion. ESI mass spectra 

revealed the molecular ion peak in methanol (Figure 6.5). DFT calculations predict that the 

high-spin (S = 3/2) configuration is more stable than the low-spin (S = 1/2) one by 13.7 kcal/mol. 

Indeed, use of 
1
H-NMR yielded broad and shifted peaks indicating a paramagnetic nature for the 

complex.  

 

 

 

 

 

 

                                                             

Figure 6.5. Experimental (bars) and simulated (line) isotopic distribution for the molecular ion 

of the complex 5 ([Co
II
(MeL

2
)(Cl)]

+
) in CH3OH. 
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6.3.2. Molecular structures 

Figure 6.6 shows the ORTEP representations of crystals for 2, 3 and 4, and relevant bond 

lengths and crystallographic parameters are summarized in Tables 6.1 and 6.2. These complexes 

are pseudo-octahedral in which two Namine, one Npy, and one Cl define the basal plane and two 

Npy atoms occupy the axial positions. The amine moiety of the ligand framework is oxidized to 

imine in 2, as observed by a shorter 1.28 Å C(5)-N(3) bond than a regular C–N bond length 

(~1.5 Å). Species 3 is obtained via addition of a methoxide to C(26) from the solvent methanol. 

The C(26)–N(5) bond increases from 1.28 Å in 2 to 1.42 Å and N(5) becomes formally negative. 

Both the imine and methoxy functionalities in 2 and 3 are converted into an amide moiety in 4. 

The N(3) amide atom is also negatively charged, and coordinated to Co(III) at 1.88 Å is the 

strongest among all the Co–N bonds of the species. The C(9)=O(1) moiety is 1.23 Å long and the 

C(9)–N(3) distance at 1.35 Å is shorter than a regular C–N bond, suggestive of significant π-

conjugation in the ligand framework. 

 

Figure 6.6. ORTEP representations of 2-4 at 50% probability. 
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The X-ray structure of 5 (Figure 6.7) is also pseudo-octahedral, and shows the Co–Cl bond at 

2.33 Å, thus longer than those found in 2-4. 

 

 

 

 

 

 

Figure 6.7. The ORTEP representation of complex 5 at 50% ellipsoid probability. 

Inspection of the geometries of the Co
III

 2 and the Co
II
 5 complexes reveals a change in the 

conformation of the ligand framework. This reversal of the conformational stability is imposed 

by the change of the ligand from imine to N-methylamine, rather than by the change of the 

oxidation state from Co
III

 to Co
II 

(Figure 6.8, 6.9). Inspection of the geometries of complexes 2 

and 5 reveals a change in the conformation of the ligand framework and a reversal of the 

conformational stability (2(i) to 5(ii)) is found as illustrated in Figure 6.8. Complexes 2 and 5 

have different functionalities (imine vs. N-methylamine) in the ligand framework and different 

oxidation states (Co
III

 vs. Co
II
) of the metal center. In order to evaluate the contribution of the 

oxidation state and ligand functionality towards the reversal of the conformational stability, 

conformational isomers were studied for four species, Co
III

-imine, Co
III

-amine, Co
III

-N-

methylamine and Co
II
-N-methylamine (Figure 6.8). Species 2 with a planar, conjugated and 

rigid imine ligand framework prefers conformer i as the other conformer ii requires the imine 
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bond to be twisted and it deviates from the planarity. Saturating the rigid imine backbone to 

more flexible amine reduces the strain in conformer ii while decreases the stability of conformer 

i because of loss of the conjugation. As a result, the energy difference between the two 

conformers decreases from 31.9 in 2 to 2.7 kcal/mol in 6. Introducing a N-methyl moiety makes 

conformer i sterically more crowded than ii as the former has three phenyl moieties (A, B and C) 

close to the methyl function while the later has only two (A and D). Consequently, ii becomes 

more stable than i for 7 and the change of the oxidation state of cobalt cannot affect this stability 

order as 5(ii) is found to be lower in energy than 5(i). Therefore, the reversal of the 

conformational stability from 2(i) to 5(ii) is a result from the contribution of the ligand 

functionality rather than the oxidation state of cobalt center. 

 

Figure 6.8. Relative energetics of the conformational isomers of Co
III

-imine, Co
III

-amine, Co
III

-

N-methylamine and Co
II
-N-methylamine complexes in MeOH. Reversal of the conformational 

stability (i to ii) from Co
III

-imine to Co
II
-N-methylamine species is imposed by the change of the 

ligand from imine to N-methylamine rather than by the change of the oxidation state of the metal 

center from Co
III

 to Co
II
. 
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Figure 6.9. Relative energetics of the conformational isomers of Co
III

-imine, Co
II
-imine, Co

II
-

amine and Co
II
-N-methylamine complexes in MeOH. Reversal of the conformational stability (i 

to ii) from Co
III

-imine to Co
II
-N-methylamine species is imposed by the change of the ligand 

from imine to amine rather than by the change of the oxidation state of the metal center from 

Co
III

 to Co
II
. 

 

6.3.3. Reactivity studies towards amide formation 

Isolation of the methoxy species 3 demonstrates the susceptibility of the imine function in 2 to 

undergo facile nucleophilic attack from the solvent. Similarly, in order to explain the amide 

conversion from 2 to 4, a hydroxy intermediate must be invoked by addition of adventitious 

water present in the solvent to the imine moiety of 2. This step has been documented.
7
 A detailed 

density functional theory (DFT)
8
 study was also performed to evaluate details of the hydroxyl to 

amide conversion mechanism (Figure 6.10). Calculations indicate that the transformation 
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requires atmospheric 
3
O2 to react with the C–H function of the intermediate hydroxyl complex. 

The C–H hydrogen abstraction event is rate-limiting and nearly isoenergetic as the resulting 

intermediate (I) is about 2 kcal/mol higher than the starting hydroxyl complex. In species I the 

hydroperoxo radical (
.
OOH) is weakly bonded to the hydroxyl and the unpaired electron 

generated on the ligand is transferred to the metal center reducing it to Co
II
. Thus, the metal 

center helps stabilize the radical intermediate (I) and makes the C–H hydrogen removal event 

nearly isoenergetic.
7
 An intersystem crossing (triplet to singlet surface) from species (I) followed 

by the removal of the hydroxyl hydrogen by the hydroperoxo radical gives rise to the amide 

complex 4 and the overall process is favored by about 38 kcal/mol. Geometry optimization of 

intermediate (I) on the singlet surface results in the transfer of the hydroxyl hydrogen from the 

metal complex to the hydroperoxo radical giving rise to 4. 

 

 

 

 

 

 

 

 

Figure 6.10. Reaction energy profile for the hydroxyl to amide conversion in MeCN. The 

transition state * is not explicitly located. 
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Other mechanistic possibilities considered for the formation of Co
III

-amide (4) from Co
III

-

hydroxide can be found in Figure 6.11-6.13.  

 

 

 

 

 

 

Figure 6.11. The pathway for the conversion of the hydroxyl complex to amide via direct H2 

elimination. 

The pathway in Figure 6.11 involves a strained four-membered fragment in the transition state. 

A linear scan (DFT calculations) in CH3CN was performed from the hydroxyl complex bringing 

two reacting hydrogen centers closer to each other. As expected, the scan showed that the energy 

required for the conversion is too high (> 50 kcal/mol) invalidating the possibility of this 

pathway.  

 

 

 

 

 

 

Figure 6.12. An alternative pathway for the conversion of intermediate (I) into the amide 

complex in CH3CN. 
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The pathway in Figure 6.12 involves opening of one of the coordination sites on cobalt in 

intermediate (I) when one of the pyridine rings dissociates. One 
3
O2 molecule can coordinate on 

the Co
II
 center and an internal electron transfer from metal to O2 gives rise to Co

III
–O2

(.)
 

fragment as shown in intermediate (A). Abstraction of the hydroxyl hydrogen by this activated 

O2
(.) 

fragment can potentially give rise to the amide product. However, DFT calculations find 

that the transformation of intermediate (I) to (A) is energy-requiring by 16.4 kcal/mol. Moreover, 

the optimized geometry of intermediate (A) demonstrates that the hydroxyl hydrogen and the 

oxygen atom of O2
(.) 

fragment are too far away (3.72Å) to combine with each other.   

 

Figure 6.13. An alternative pathway for the conversion into the amide complex in CH3CN. 

 

The high-spin (S=2) configuration of intermediate (I) is found to be lower in energy than its low-

spin (S=1) state by about 12 kcal/mol in CH3CN. Therefore, we propose that, in addition to the 

low-spin (S=1) state giving rise to the amide product as described in Figure 6.13, the high-spin 

(S=2) configuration can also potentially give rise to the singlet amide complex via intersystem 

crossing.  

Experimental results revealed that the conversion of 2 and 3 into the amide 4 does not take place 

in the absence of oxygen (Figure 6.14). After keeping the mixture of imino (2) and methoxy (3) 
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pyridine under argon for few hours, no transformation to amide was observed in anaerobic 

condition (no oxygen). 

 

 

 

 

 

Figure 6.14. Electrochemical experiment to the mixture of 2 and 3 after few days in anaerobic 

condition (CV of the final solution containing Imine (2) + methoxy (3) in CH3CN in air-tight 

condition after 24 hours). 

Inspection of the optimized geometry of 3 reveals that a direct SN2 attack on the carbon atom 

bearing the methoxy function by a water molecule is also not feasible because of steric crowding 

imposed by one of the pyridine rings (Figure 6.15). As a result, conversion of 3 into 4 must 

proceed via the regeneration of 2 that then undergoes water addition followed by oxidation with 

O2 (Figure 6.15). 

 

 

 

 

 

Figure 6.15. Conversion of complex 3 to 4. 
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As shown by the CPK model of the optimized structure of complex 3 (inset: Figure 6.15), 

nucleophilic  attack by a water molecule on the carbon atom bearing the methoxy moiety is not 

feasible as the SN2 approach of the water is sterically blocked by a pyridine moiety attached on 

the cobalt center. Alternatively, addition of a proton to the methoxy function from water results 

in the loss of a MeOH molecule from complex 3 and can give rise to complex 2. Addition of 

water to the imine function in 2 can produce the hydroxyl complex which eventually gets 

oxidized with atmospheric O2 to convert into the amide complex 4.     

6.3.4. Magnetic properties 

Well-defined and sharp peaks in the 
1
H-NMR spectra in CD3CN confirm the diamagnetic nature 

(3d
6
 
LS

Co
III

) of complexes 2-4. On the other hand, for complex 5, DFT calculations predict that 

the high-spin (S = 3/2) configuration is more stable than the low-spin (S = 1/2) one by 13.7 

kcal/mol. Indeed, use of 
1
H-NMR yielded broad and shifted peaks indicating a paramagnetic 

nature for the complex.  

The electron paramagnetic resonance (EPR) spectrum of 5 in MeCN was taken at 4 K and 

confirms the species as 
HS

Co
II
 in a pseudo-octahedral environment (Figure 6.16a). The observed 

peaks are interpreted as transitions between Δms =  1/2 sublevels and can be simulated with the 

parameters g1 = 6.34, g2 = 3.47, g3 = 1.96 and A1 = 474, A2 = 130, and A3 = 170 MHz. As a rule, 

the EPR lines for Δms =  3/2 are not observed in non-crystalline 3d
7
 systems due to their strong 

orientation dependence. Comparisons of the crystal structure with the calculated high-spin 

(Figure 6.16b) and low-spin (Figure 6.16c) configurations also find a much better agreement 

with the HS species, showing deviations in the metal–ligand bond distances between 0.03-0.08 

Å, while the same deviation for an LS species varies from 0.03-0.34 Å (Figure 6.17). As shown 

in the Figure 6.17, calculated bond lengths of the high-spin (S=3/2) configuration match 
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satisfactorily with those of the crystal structure while the calculated bond lengths of the low-spin 

(S=1/2) complex deviate significantly. These results support for the high-spin state of complex 5 

which is confirmed by its EPR measurement. 

 

 

 

 

 

 

 

 

 

Figure 6.16. (a) EPR spectrum in MeCN for 
HS

5 (S = 3/2). Comparisons of the crystal structure 

with the calculated HS (b) and LS (c) species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17. Differences of the metal-ligand bond distances (Å) between the crystal and DFT-

optimized structures of complex 5 in MeOH. 
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6.3.5. Electronic properties 

The UV-visible spectra of the Co
III

 complexes 2-4 in MeCN are shown
 
in Figure 6.18 and Table 

6.3. They are dominated by intense intraligand UV processes along with faint visible processes 

associated with d-d transitions. The imine 2 and amide 4 show absorptions at 490 nm (20,400 

cm
-1

, ε = 240 M
-1

cm
-1

) and 488 nm (20,500 cm
-1

, ε = 320 M
-1

cm
-1

), respectively, associated with 

the 
1
T2g(I)  

1
A1g(D) transition of an ideal octahedral field.

9
 These species absorb in the blue 

region and are characterized by a faint orange color. The methoxy species 3 shows a lower 

energy absorption at 667 nm (15,000 cm
-1

, ε = 410 M
-1

cm
-1

) associated with 
1
T2g(I)  

1
A1g(D). 

It absorbs in the red region and is green colored. On the other hand, the pinkish color observed 

for the 
HS

Co
II
 species 5 is the result of an absorption in the green region at 504 nm (19,800 cm

-1
, 

ε = 46 M
-1

cm
-1

) associated with an idealized 
4
T1g(P)  

4
T1g(F) process.

9
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18. UV-visible Spectra of 2-5 ([C] = 1.0 × 10
-4

 M) in acetonitrile. 
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 Table 6.3. UV-visible parameters for 2-5 in CH3CN. 

 

 

6.3.6. Electrochemical properties 

Cyclic voltammetry was performed for complexes which are more robust and well-behaved. The 

cyclic voltammetry (CV) profile for 2 in dry MeCN shows two reversible and two quasi-

reversible processes at -0.27, -1.16, -2.01, and -2.12 VFc/Fc+. Complex 4 shows two reversible and 

one irreversible process at -0.69, -1.99, and -2.41 VFc/Fc+ while two reversible and one quasi-

reversible process were found at -0.02, -1.92, and -2.39 VFc/Fc+ for species 5 (Figure 6.19).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19. Cyclic voltammetry profiles of 2, 4, and 5 in dry MeCN. 

  λ (nm) |ε (M
-1

cm
-1

)| λ (nm) |ε (M
-1

cm
-1

)| λ (nm) |ε (M
-1

cm
-1

)| λ (nm) |ε (M
-1

cm
-1

)| 

2 331 |11041| 346 |10706| 384 |4255| 490 |239| 

3 263 |24624|  332 |4406| 667 |410| 

4   360 |4384| 488 |320| 

5 252 |9717|   504 |46| 
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The reduced species generated at affordable potentials for the chemically robust species 4 and 5 

are of immense interest to proton and water reduction, and a detailed electronic characterization 

is offered here. Important CV parameters for the reduced analogs of 2-5 are presented in Table 

6.4 and electronic and energetic analyses are shown in Figure 6.20. Mulliken spin density 

analysis finds the first reduction event associated to the Co
III

/Co
II
 couple for 4 yielding a 3d

7
 

HS
Co

II
 center. Occupation of the antibonding metal-based and idealized eg* MOs increases the 

metal–ligand bond distances in the Co
II
-species and leads to rapid loss of the chloro ligand in the 

newly formed six-coordinate Co
II
-complex. This loss is energetically favorable by 5.5 kcal/mol 

and results in a five-coordinate 
HS

Co
II
 species. Because of the presence of a planar and 

conjugated amide framework, some degree of redox non-innocence behavior is shown by the 

ligand during the second reduction event (Figure 6.20). Complex 5 undergoes oxidation at -0.02 

V (Co
II 

to Co
III

) while the first reduction event happens at -1.92 V. Calculations suggest that this 

reduction event is metal-based and results into a 3d
8
 Co

I
 center. Loss of the chloro ligand from 

Co
I
 complex is favored by 5.4 kcal/mol. On the other hand, chloride elimination from the six-

coordinate Co
II 

analog is unfavorable by 4.9 kcal/mol. 

 

Table 6.4. CV parameters for 2, 4, and 5 in CH3CN.  

 

 

 

 

 

 

  Co
III

/Co
II

  

E
½
,  [E

pc
; E

pa
], V (ΔE, 

V) |i
pc

/i
pa

| 

Co
II

/Co
I
  

E
½
, V 

(ΔE, V) |i
pc

/i
pa

| 

  

C=N/C
●

-N
-

 

E
½
, V 

(ΔE, V) |i
pc

/i
pa

| 

2 -0.27 (0.09) |0.96| -1.16 (0.12) |1.20| -2.00 (0.08) |N/A| 

-2.12 (0.06) |N/A| 

4 -0.69 (0.09) |1.03| -1.99 (0.10) |1.59| -2.41 (0.14) |2.20| 

5 -0.02 (0.12) |1.01| -1.92 (0.11) |1.38| -2.39 (0.11) |3.00| 



www.manaraa.com

210 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20. Spin density plots (isosurface value of 0.004 a.u.) of the redox-active species 

generated during the electrochemical reduction of Co-amide and Co-N-methylamine complexes. 

 

Co
II
-species are found to be high-spin (S=3/2) for both amide and N-methylamine complexes. 

Mulliken spin density (MSD) values calculated for the metal centers are about 2.7 which 

validates the presence of high-spin Co
II
. The low-spin states (S=1/2) are found to be higher in 

energy by 16.9 and 13.3 kcal/mol for amide and N-methylamine complexes, respectively.  Co
I
-

intermediates are found to be high-spin (S=1) as well. The low-spin states (S=0) are found to be 
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higher in energy by 18.6 and 16.2 kcal/mol for amide and N-methylamine complexes, 

respectively. However, because of π-conjugation present in the planar amide ligand framework, 

latter shows some degree of redox non-innocence character as shown in the spin density plot of 

the Co
I
-amide species (Figure 6.20).  

 

6.3.7. Electrocatalytic properties 

6.3.7.1. Proton reduction electrocatalysis 

Electrocatalytic behavior was investigated with complexes 4 and 5 due to their stability and 

robust nature. The weak organic acids, triethyl ammonium chloride (Et3NHCl) (Figure 6.21) and 

acetic acid (HOAc) (Figure 6.22) were used as the proton source. A catalytic peak was found 

near the second reduction process for 4 upon addition of various equivalents of HOAc in MeCN 

(Figure 6.22a). An observed catalytic current of 200 μA was measured after addition of 10 

equiv. of HOAc and the overpotential was 0.740 V when the homoconjugation effect of the acid 

was considered.
10

 The rate of H2 generation (kobs) was 7.39 s
-1

 and the identity of dihydrogen was 

confirmed by the bulk-electrolysis experiment at -1.7 VAg/AgCl. A turnover number (TON) of 

15.44 after 3 h was calculated with 100 equiv. of acid. Faradaic efficiency was measured to be 

~90%. Control experiments with HOAc in MeCN in absence of 4 exhibited catalytic peaks at 

significantly more negative potentials (Figure 6.23), thus validating the role of that species as a 

catalyst. Comparison of the charge versus time plots in presence and absence of 4 confirms the 

catalytic activity of the complex (inset: Figure 6.22a). Electrocatalytic measurements with 

complex 5 found a catalytic peak close to the second redox couple (Figure 6.22b) as observed 

with 4. The catalytic current and kobs were found to be 150 μA and 4.29 s
-1

, respectively in 

presence of 10 equiv. of HOAc. An overpotential of 0.69 V was found and H2 evolution was 
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confirmed by electrolysis at -1.7 VAg/AgCl. A TON of 14.35 was observed after 3 h with 100 

equiv. of acid. Faradaic efficiency was found to be 75%. Control experiments (Figure 6.23) and 

charge versus time plots (inset: Figure 6.22b) confirm the catalytic behavior of 5. Comparison of 

the electrocatalytic behavior of 4 and 5 with that of a blank solution is also shown in Figure 

6.23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21. Catalytic CV experiments for 4, and 5 with Et3NHCl in CH3CN. 

(a) 

(b) 
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Figure 6.22. CV experiments of H2 generation by 4 (Figure 7.22a) and 5 (Figure 7.22b) in 

MeCN. The numbers 0-10 indicate the HOAc equiv. used in comparison to the complex. Insets: 

Charge versus time plots during the bulk electrolysis of 4 and 5 (applied potential: -1.7 VAg/AgCl). 

Complex: 4 μmol; HOAc: 0.4 mmol during electrolysis. 
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Figure 6.23. Comparison of CV for 4, 5, and blank with HOAc in CH3CN. 

 

 

6.3.7.2. Water reduction electrocatalysis 

The ultimate goal of electrocatalytic H2 generation from neutral water (pH = 7) in phosphate 

buffer (1M) was attained with 4 and 5 (Figure 6.24). The catalytic peak appears at an onset 

overpotential of 0.55 V for 4. Electrolysis at -1.7 VAg/AgCl yielded a TON of 1,615 after 3 h with 

Faradaic efficiency of 95%. The TON reaches over 7,000 after 18 h without any obvious sign of 

catalyst decomposition (Figure 6.25a). The catalytic peak for 5 appears at a slightly more 

positive onset overpotential of 0.70 V, and electrolysis at -1.7 VAg/AgCl confirmed dihydrogen 

generation. The TON and Faradaic efficiency were calculated to be 1,400 and 95%, respectively, 

over 3 h. No decomposition of the catalyst 5 was observed after 18 hours, when the TON reaches 

over 6,000 (Figure 6.25b). Control experiments generate some dihydrogen at more negative 

potentials than those with 4 and 5 (Figures 6.24a and 6.24b). Charge consumption over time is 

much higher with both the complexes than that with the blank solution (insets: Figures 6.24a 

and 6.24b). Comparison of the electrocatalytic behavior of 4 and 5 in water is shown in Figure 

6.26. All the relevant catalytic parameters are reported in Table 6.5. 
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Figure 6.24. CV experiments of H2 generation by 4 (Figure 7.24a) and 5 (Figure 7.25b) from 

water (pH = 7 with 1M phosphate buffer). Insets: charge versus time plots during the bulk 

electrolysis of 4 and 5 (applied potential: -1.7 VAg/AgCl). Complex: 0.2 μmol during electrolysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.25. Charge versus time plot during bulk electrolysis for 18 hours of (a) 4, TON/18 

hours: 7150; Faradaic efficiency: 95%; and (b) 5, TON/18 hours: 6000; Faradaic efficiency: 

95%. 

a b 
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Figure 6.26. Comparison of CV for 4 and 5 with H2O (phosphate buffer, pH: 7). 

 

 

Table 6.5. Catalytic parameters with HOAc in CH3CN and in water for 4 and 5 (bulk electrolysis 

(BE) for 4 and 5: Applied potential (AP): -1.7 VAg/AgCl with HOAc in CH3CN; BE of 4 and 5 

(AP: -1.7 VAg/AgCl) with water/phosphate buffer (pH: 7). 

 

 

 

 

 

 

 

 

 

 

 

Parameters 4  

(HOAc) 

4 

(H2O) 

5  

(HOAc) 

5 

(H2O) 

Overpotential (V) (10 eq. HOAc) 

Onset Overpotential (H2O) (10 mL 1M buffer) 

0.74 0.55 0.69 0.70 

k
obs 

(s
-1

) (10 eq. HOAc) 7.39 N/A 4.29 N/A 

TON/3h (4.0 X 10
-6

 mol) (100 eq HOAc) 

TON/3h (2.0 X 10
-7

 mol) (H2O, 20 mL 1M buffer) 

15.44 1615 14.35 1400 

Faradaic efficiency (%) 90 95 75 95 
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6.3.7.3. Catalytic mechanism 

Mechanisms of electrocatalytic H2 evolution by 4 and 5 have been elucidated by DFT 

calculations. Figure 6.27 describes the catalytic pathway for complex 4 in MeCN. The five-

coordinate Co
II
-species, generated after dissociation of the chloro ligand, undergoes reduction to 

the corresponding Co
I
 complex. The reduction potential is calculated as -1.83VFc/Fc+. Uptake of a 

proton by the Co
I 
complex is favorable by 22.5 kcal/mol and results in the six-coordinate Co

III
–H 

complex, which gets reduced to the more reactive 
HS

Co
II
–H species. The latter species is high-

spin in nature and occupation of the idealized eg* MOs weakens the metal-ligand interactions. 

The Co–H bond elongates from 1.49 Å in the 
LS

Co
III

-complex to 1.73 Å in the 
HS

Co
II
-species. As 

a result, the hydride in the Co
II
–H moiety is susceptible to heterolytic attack by an external 

proton. Uptake of a proton and generation of H2 by this complex is favored by 54.0 kcal/mol 

(Figure 6.27), regenerating the five-coordinate Co
II
-complex to restart the catalytic cycle. The 

reaction of a proton with the Co
II
–H is expected to be activationless.

11
 The homolytic pathway by 

the combination of two Co
II
–H complexes is significantly less exothermic compared to the 

heterolytic mechanism.  A proton-coupled electron transfer (PCET) event is not invoked for the 

Co
II
/Co

III
–H transformation since no anodic shift was found in the experimental electrocatalytic 

measurement of 4 with the decrease of pH. However, a PCET event for the Co
I
/Co

II
–H 

conversion, thereby bypassing the Co
III

–H intermediate, may be plausible. Complex 5 follows a 

similar catalytic mechanism, as described in Figure 6.28. Figure 6.28 describes the catalytic 

pathway of H2 generation by complex 5 in CH3CN. The reduction potential of 5 is calculated to 

be -1.75VFc/Fc+. The six-coordinate high-spin triplet Co
I
-species, generated after the reduction, 

loses the chloride to obtain a vacant coordination site on the metal center. Loss of chloride is 

found to be favorable by 5.4 kcal/mol. Addition of a proton onto the vacant site of the Co
I
 center 
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is calculated to be favorable by 11.7 kcal/mol. The resulting Co
III

–H species can get reduced 

easily to the more reactive Co
II
–H complex. The later species can accept one more proton on the 

hydride moiety and the generation of dihydrogen is calculated to be downhill by 41.5 kcal/mol.  

The five-coordinate Co
II
-complex obtained after the release of dihydrogen, gets reduced at a 

potential of -1.29VFc/Fc+ to give rise to the corresponding Co
I
-species that can restart the catalytic 

cycle. A proton-coupled electron transfer (PCET) event is not invoked for the Co
II
/Co

III
–H 

transformation since no anodic shift was found in the electrocatalytic measurement of 5 with the 

decrease of pH. However, a PCET event for the Co
I
/Co

II
–H conversion, thereby bypassing the 

Co
III

–H intermediate, may be plausible.  

 

Figure 6.27. Catalytic mechanism of H2 generation by 4 in MeCN. It involves a Co
III

–H species 

that undergoes protonation to generate H2. Bimolecular mechanism via the combination of two 

Co
II
–H complexes is unlikely. Pathway involving a proton-coupled electron transfer event from 

the Co
I
-complex to the Co

II
–H species can contribute to the catalysis. The energetics for all 

events is reported as free energy changes in kcal/mol. 
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Figure 6.28. Catalytic mechanism of H2 generation by 5 in CH3CN. Energetics of all the 

chemical events is reported as free energy changes in kcal/mol. 
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6.4. Conclusions 

In conclusion, I have described the syntheses and characterization of a series of pentadentate, 

pyridine-rich Co-complexes 1-5 with amine, imine, methoxy, amide, and N-methylamine 

functionalities. The methoxy and amide species arise from the imine complex 2 via reaction with 

a solvent methanol or water, respectively. The Co
III

 imine 2 arises from aerial oxidation of the 

corresponding Co
II
-amine species 1. Introduction of an N-methyl function in 1 inhibits this 

oxidation and yields the 
HS

Co
II 

N-methylamine 5. Electrocatalytic experiments with 4 and 5 

reveal H2 generation with TONs of 15.44 and 14.35, respectively after 3 h in presence of acetic 

acid in MeCN solutions. Remarkably, 4 and 5 are excellent water reduction catalysts with TONs 

of 7,000 and 6,000, respectively after 18 h. The present TONs insert these two species among a 

select group of top catalysts for water reduction. Catalytic mechanisms obtained by DFT 

calculations involve the formation of a Co
III

–H species that undergoes further reduction followed 

by protonation of the hydride on the cobalt center. 
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CHAPTER 7 

CONCLUSIONS 

We designed several redox-active ligand architectures to optimize and understand the redox, 

electronic, and catalytic properties of their respective cobalt complexes towards proton and water 

reduction. The ligand design was varied from a pentadentate π-donor phenolate to a tetradentate 

acceptor oxime in order to reduce the overpotential of hydrogen generation in organic solvents 

(Figure 7.1a,b). We altered the substitution, axial ligands and axial ligand substitutions to vary 

electronic and catalytic properties for such tetra- or pentadentate ligand systems.  

 

 

 

 

Figure 7.1. Modulation of ligand design towards proton and water reduction. 

Knowledge of the nature of the active catalytic species enabled us to design the pentadentate 

oxime ligand which exhibited rich reaction chemistry along with suitable catalytic property in 

organic solvent (Figure 7.1c). The presence of several polar groups such as –OH and –NH and 

the absence of any aromatic rings make this complex water soluble, which is an added 

advantage. Additionally, this complex exhibited excellent catalytic properties in water with low 

onset overpotential and high turnover number. We developed a similar redox-active π-acceptor 

pentadentate phenylene-bridged pyridine-rich ligand (Figure 7.1d) which provided extremely 

versatile reaction chemistry after complexation with cobalt. These complexes displayed catalytic 

properties at moderate to low-overpotential in acetonitrile with good turnover numbers. 

(a) (b) (c) (d) 
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Cl 

Furthermore, the water solubility and tunability of such complexes make them suitable 

candidates for water reduction. Therefore, water reduction was carried out with these complexes 

showing low onset overpotentials and high turnover numbers.  

Finally, we incorporated [Ru(bpy)2]
2+

-based photosensitizer with one of the catalytic module 

(cobalt tetradentate oxime) to generate heterobimetallic [Ru
II
Co

III
] species which displayed 

quenching of Co
III

 upon electron transfer from Ru
II
* excited state.  

In Chapter 3, cobalt(III) complexes of phenolate-rich [N2O3] ligands were synthesized and 

characterized by multiple physico-chemical methods (Figure 7.2). Phenol substituents were 

varied from mild electron-withdrawing halogen to sterically bulky and electron-donating t-butyl 

group. A considerable change of electrochemical potential and electron acceptance rate were 

observed upon changing the phenolate substituents. The cobalt complex of chloro substitued 

phenolato ligand exhibited catalytic activity in the presence of weak acid such as acetic acid 

(HOAc) with an overpotential of 0.61 V. Bulk electrolysis at -1.8 VAg/AgCl confirmed hydrogen 

generation with a TON of 11 after 3 hours with a Faradaic efficiency around 85 % in the 

presence of 100 equivalents of HOAc.  

 

 

 

 

Figure 7.2. Various Co
III

[N2O3] systems and reactivity of chloro substituted complexes towards 

proton reduction in the presence of HOAc. 
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In Chapter 4, cobalt(III) complexes of oxime-rich N4 ligand were synthesized with chloride and 

substituted pyridine as axial ligands (Figure 7.3). Pyridine substitutions were altered from mild 

donating t-butyl, to strongly donating pyrrolidine, to electron-withdrawing benzoyl group. The 

identities of the redox species generated during electrochemistry were elucidated by means of 

CV, and 
1
H-NMR titrations, EPR, and UV-visible spectroscopy, and DFT calculations. These 

complexes showed catalytic activity in the presence of mild-acid such as trifluoroacetic acid 

(TFA) with an overpotential of 0.35 V. Bulk electrolysis at -1.0 VAg/AgCl confirmed hydrogen 

generation with a TON between 13-20 after 3 hours with a Faradaic efficiency around 85 % in 

the presence of 100 equivalents of TFA. A catalytic mechanism was proposed invoking a 

heterolytic pathway from Co
II
-H species. 

 

 

         

 

Figure 7.3. Various cobalt-oxime complexes with several axial substituents and its reactivity 

with TFA. 

A heterobimetallic [Ru
II
Co

III
] complex based on this oxime as the bridging ligand was also 

synthesized and characterized by multiple physicochemical techniques (Figure 7.4). Both the 

cobalt module and [RuCo] complex exhibited electrocatalytic activity in the presence of TFA 

with the overpotential of 0.34 and 0.37 V, respectively. The hydrogen generation was confirmed 

by bulk-electrolysis experiment at -1.0 VAg/AgCl in the presence of hundred equivalents of TFA. 

The corresponding TONs were found to be 7.2 and 7.0 after one hour, respectively, with a 

Faradaic efficiency of 70%. The transient absorption (TA) experiment reveals electron transfer 

t-Bu 
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from ruthenium to the cobalt center upon irradiating the complex at 500 nm light in either 

acetonitrile or in methanol. The photocatalytic activity of this complex towards hydrogen 

production is under investigation in the collaboration with Dr. Karen Mulfort at Argonne 

National Laboratory. 

 

 

 

 

 

Figure 7.4. Cobalt and [RuCo] complexes based on oxime ligands and their activity with TFA. 

 

In Chapter 5, cobalt(III) complex of pentadentate nitrogen-rich oxime ligand was synthesized 

and thoroughly characterized (Figure 7.5). Water incorporation was observed in the ligand 

framework during the complexation reaction. This complex displayed proton reduction activity 

in the presence of weak acid such as acetic acid and seems to operate in a molecular fashion. A 

catalytic mechanism was proposed invoking a heterolytic pathway from Co
II
-H species. On the 

other hand, it can also generate hydrogen from neutral water at an overpotential of 0.65 V. This 

complex showed 6000 TON at -1.7 VAg/AgCl after 18 hours period with neutral water and cobalt-

based nanoparticles was found to be the active species for the catalysis.  

          

 

 

                                                                          

 

Figure 7.5. Cobalt complex of pentadentate oxime ligand and its activity towards water. 
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In Chapter 6, Cobalt complexes of two pyridine-rich [N2N
py

3] ligands were synthesized (Figure 

7.6). Ligand transformation was observed from amine to imine to amide with the secondary 

amine containing ligand in the presence of cobalt, whereas this kind of oxidation can be 

prevented upon incorporating a methyl substituent on that particular nitrogen. The complexes 

exhibited proton reduction in the presence of weak acid such as acetic acid with an overpotential 

around 0.70 V. Bulk electrolysis at -1.7 VAg/AgCl confirmed hydrogen generation with TON 

around 15 after three hours with Faradaic efficiency around 90 % in the presence of 100 

equivalents of HOAc. These complexes was found to be water soluble and demonstrated water 

reduction activity with onset overpotential of 0.55 V (amide), and 0.70 V (amine). Bulk 

electrolysis at -1.7 VAg/AgCl confirmed the presence of hydrogen with TON of 7200 and 6000 

after 18 hours with a Faradaic efficiency around 95 % for amide and amine containing 

complexes, respectively. A catalytic mechanism was proposed invoking a heterolytic pathway 

from Co
II
-H species. 

 

 

 

Figure 7.6. Cobalt complexes of pentadentate pyridine-rich ligand and its activity towards water. 

In summary, we scanned a series of various ligand frameworks to optimize the electrocatalytic 

properties upon changing the electronic behavior. In addition, a [Ru
II
Co

III
]-based photocatalytic 

assembly was developed with selected catalytic module. 
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A considerable understanding of the electronic and catalytic activity of cobalt complexes in 

various ligand frameworks enabled us to design and synthesize several heterobimetallic [RuCo] 

scaffolds based on phenanthroline ligand. Therefore, we synthesized complexes such as shown in 

Figure 7.7. The complex shown in the left side of Figure 7.7 is a complex containing [Ru
II
Co

III
] 

scaffold whereas the complex in the other side is of [Ru
II
Co

II
] type. Generation of hydrogen by 

performing electron transfer from Ru
II
 to Co

III
 may not be viable, due to the lack of reactivity for 

the Co
II
 species to generate hydrogen. 

 

 

 

 

 

 

 

Figure 7.7. [Ru
II
Co

III
] and [Ru

II
Co

II
]-based heterobimetallic scaffold towards hydrogen 

production. 

 

On the other hand, the [Ru
II
Co

II
] species can be promising due to the ease of formation of 

catalytically active Co
I
 species upon one electron transfer from Ru

II
 to Co

II
. Although the 

transfer of electrons are theoretically feasible, a number of challenges are associated with this 

process, such as i) whether the electron will go to phenanthroline instead of bipyridine, ii) if it 

goes to phenanthroline (due to higher conjugation), whether it will stay there or reach to cobalt, 

and iii) when the electrons reach cobalt wheather it can do back electron transfer and recombine. 

Future studies will involve synthesis of such complexes and study of their electron transfer and 

photocatalytic activity towards hydrogen production. 
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Appendix-I 

Synthesis and Characterizations of the Complexes Not Included in Chapters 

 

 

 

 

 

 

Figure AI.1. Cobalt(III) complexes of [N2O3]-based phenolate-rich ligands. 

Synthesis of the precursors. The precursors 2-(chloromethyl)-4-nitrophenol, phenylenediamine 

and 4,5-dichlorobenzene-1,2-diamine were purchased from commercial sources whereas the 

other precursors 2,4-di-tert-butyl-6-(chloromethyl)phenol
8
 and 4,5-dinitrobenzene-1,2-diamine

9
 

were synthesized according to methods already described in the literature. 

Synthesis of the ligands. General procedure. Phenylenediamine (2 mmol) was treated with 2-

(chloromethyl)-4-nitrophenol (6.2 mmol) in presence of triethylamine (8 mmol) in 80 mL of 

dichloromethane for three days under reflux to yield a yellow colored solution. The mixture was 

washed three times with brine solution (3 × 200 mL) to remove all the excess triethylamine, 

dried over anhydrous sodium sulfate and the crude product was isolated by solvent 

rotoevaporation.  Unreacted chloride was removed by washing the solid with cold hexane to 

yield a yellow-colored solid. Similar procedure has been followed for the reaction of 4,5-

dinitrobenzene-1,2-diamine or 4,5-dichlorobenzene-1,2-diamine with 2,4-di-tert-butyl-6-
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(chloromethyl)phenol in presence of triethylamine in dichloromethane to generate red and 

yellow color solution respectively. 

2,2'-(((2-((2-hydroxy-5-nitrobenzyl)amino)phenyl)azanediyl)bis(methylene))bis(4-nitrophenol) – 

H3L´
4-NO

2. Yield: 75%. IR (KBr, cm
-1

) 3396(w) (OH); 3263(w) (NH); 3071(w) (Ar-CH); 

2983(w), 2948(w) (alkyl-CH); 1591(m), 1490(m) (Ar-C-C); 1521(m), 1337(s), 1284(s) (-NO2); 

1162(m) (C-O). 
1
H-NMR [400 MHz, d

6
-DMSO, 300K] δ/ppm = 4.076 [s, 4H (CH2)]; 4.372 [s, 

2H (CH2)]; 6.266 [d, 1H (aryl)]; 6.416 [t, 1H (aryl)]; 6.676 [d, 2H (aryl)]; 6.75 [t, 1H (aryl)]; 

6.94 [d, 1H (aryl)]; 7.113 [d, 1H (aryl)]; 7.862 [dd, 2H (aryl)]; 7.944 [dd, 1H (aryl)]; 7.999 [d, 

1H (aryl)]; 8.062 [d, 2H (aryl)]. ESI pos. in MeOH: m/z = 561.98 for [H3L´
4-NO

2 + H
+
]

+
. 

6,6'-(((2-((3,5-di-tert-butyl-2-hydroxybenzyl)amino)-4,5-dinitrophenyl)azanediyl) bis 

(methylene))bis(2,4-di-tert-butylphenol) – (NO2)2H3L´
2,4-t-bu

. Yield: 80%. IR (KBr, cm
-1

) 

3607(w), 3405(w) (OH); 3326(w) (NH); 3078(w) (Ar-CH); 2958(s), 2868(s) (alkyl-CH and t-

bu); 1596(s), 1481(s) (Ar-C-C); 1545(s), 1364(s), 1273(s) (-NO2); 1149(m) (C-O). 
1
H-NMR 

[400 MHz, CDCl3, 300K] δ/ppm = 1.245 [s, 36H (t-butyl)]; 1.310 [s, 9H (t-butyl)]; 1.43 [s, 9H 

(t-butyl)]; 3.855 [s, 2H (CH2)]; 4.248 [s, 2H (CH2)]; 4.367 [s, 2H (CH2)]; 5.691 [s, 1H (OH)]; 

6.343 [s, 2H (OH)]; 6.942 [s, 1H (aryl)]; 7.031 [d, 2H (aryl)]; 7.157 [q, 3H (aryl)]; 7.329 [s, 1H 

(NH)]; 7.387 [d, 1H (aryl)]; 7.931 [s, 1H (aryl)]. ESI pos. in MeOH: m/z = 859.55 for 

[(NO2)2H3L´
2,4-t-bu 

+ Li
+
]

+
. 

6,6'-(((4,5-dichloro-2-((3,5-di-tert-butyl-2-hydroxybenzyl)amino) phenyl)azanediyl) bis 

(methylene))bis(2,4-di-tert-butylphenol) – Cl2H3L´
2,4-t-bu

. Yield: 85%. IR (KBr, cm
-1

) 3612(w) 

(OH); 3328(w) (NH); 3070(w) (Ar-CH); 2959(s), 2906(m), 2868(m) (alkyl-CH and t-bu); 

1598(w), 1482(s) (Ar-C-C); 1162(m) (C-O). 
1
H-NMR [400 MHz, CDCl3, 300K] δ/ppm = 1.244 
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[s, 36H (t-butyl)]; 1.323 [s, 9H (t-butyl)]; 1.426 [s, 9H (t-butyl)]; [3.803 [d, 2H (CH2)]; 4.133 [d, 

2H (CH2)]; 4.253 [s, 2H (CH2)]; 6.956 [s, 2H (aryl)]; 7.000 [s, 2H (aryl)]; 7.082 [s, 1H (aryl)]; 

7.132 [s, 2H (aryl)]; 7.338 [s, 1H (aryl)]. ESI pos. in MeOH: m/z = 831.47 for [Cl2H3L´
2,4-t-bu

 + 

H
+
]

+
. 

      The complexes. Caution: Perchlorate salts are potentially explosive and should be handled 

with utmost care and in small quantities. Complexes 1-3 have been synthesized under aerobic 

conditions using the general procedure described as follows: To a 30 mL solution of ligand in 

dichloromethane (1 mmol) sodium methoxide (0.162 g, 3 mmol) in 30 mL of methanol was 

added and the mixture was stirred for 10 minutes. A 20 mL methanol solution of 

[Co(H2O)6](ClO4)2 (0.365 g, 1 mmol) was added dropwise to the mixture over period of 5 

minutes. After the addition was complete, the solution was refluxed for 4 hours to ensure the 

completion of reaction and the mixture was concentrated to 10 mL. Slow evaporation of the 

solvent gave rise to brown colored precipitate which was collected by vaccum filtration. Further 

recrystalization form different solvent mixtures gave crystalline pure product. 

         [Co
III

(L
4-NO

2)MeOH] (1). H2O X-ray quality crystal grown from DCM/ACN (1:1) to isolate 

water coordinated complex. For physical characterization, original methanol coordinated 

complex have been used. Yield. 80%. IR (KBr, cm
-1

) 3421(w) (OH); 3063(w) (Ar-CH); 2930(w) 

(alkyl-CH); 1599(s), 1304(s) (NO2); 1580(s) (C=N); 1481(s) (Ar-C-C); 1095(s) (C-O); No ClO4
-
. 

1
H-NMR [400MHz, d

6
-DMSO, 300K] δ/ppm = 3.151 [s, 3H (CH3)]; 4.096 [s, 1H (OH)]; 4.18 [d, 

2H (CH2)]; 4.789 [d, 2H (CH2)]; 6.398 [d, 2H (aryl)]; 7.161 [t, 1H (aryl)]; 7.375 [t, 1H (aryl)]; 

7.435 [d, 1H (aryl)]; 7.554 [d, 2H (aryl)]; 7.756 [d, 1H (aryl)]; 7.801 [s, 1H (aryl)]; 8.205 [d, 1H 

(aryl)]; 8.260 [d, 2H (aryl)]; 8.692 [s, 1H (N=CH)];. ESI pos. in MeOH: m/z = 638.0336 for 

[Co
III

(L
4-NO

2) + Na
+
]

+
. Anal. Calcd for C28H24CoN5O11: C, 50.54; H, 3.64; N, 10.52. Found: C, 
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50.08; H, 3.87; N, 10.77. 

           [Co
III

((NO2)2(L
2,4-t-bu

))MeOH] (2). MeOH. 0.5 H2O Recrystallized from MeOH/DCM 

(1:1). Yield. 85%.  IR (KBr, cm
-1

) 3459(w) (OH); 3060(w) (Ar-CH); 2954(s), 2868(m) (t-butyl 

and alkyl-CH); 1579(s) (C=N); 1541(s), 1525(s), 1360(s) (NO2); 1473(m) (Ar-C-C); 1179(m) 

(C-O); No ClO4
-
. 

1
H-NMR [400MHz, d

6
-DMSO, 300K] δ/ppm = 0.849 [s, 18H (t-butyl)]; 0.987 

[s, 18H (t-butyl)]; 1.218 [s, 9H (t-butyl)]; 1.590 [s, 9H (t-butyl)]; 3.145 [d, 3H (CH3)]; 4.013 [d, 

2H (CH2)]; 4.184 [q, 1H (OH)]; 4.961 [d, 2H (CH2)]; 6.508 [s, 2H (aryl)]; 6.579 [s, 2H (aryl)]; 

7.035 [s, 1H (aryl)]; 7.345 [s, 1H (aryl)]; 7.623 [s, 1H (aryl)]; 8.380 [s, 1H (aryl)]; 9.152 [s, 1H 

(N=CH)]. ESI pos. in MeOH: m/z = 929.4259 for [Co
III

((NO2)2(L
2,4-t-bu

))+ Na
+
]

+
. Anal. Calcd for 

C53H76CoN4O9.5: C, 64.95; H, 7.82; N, 5.72. Found: C, 64.61; H, 7.51; N, 6.22. 

          [Co
III

(Cl2L
2,4-t-bu

)MeOH] (3). 1.5 H2O
 
Recrystallized from MeOH/DCM (1:1). Yield. 90%. 

IR (KBr, cm
-1

) 3443(w) (OH); 3047(w) (Ar-CH); 2958(s), 2904(m), 2868(m) (t-butyl and alkyl-

CH); 1605(s) (C=N); 1470(s) (Ar-C-C); 1127(m) (C-O); No ClO4
-
. 

1
H-NMR [400MHz, d

6
 

DMSO, 300K] δ/ppm = 0.864 [s, 18H (t-butyl)]; 1.032 [s, 18H (t-butyl)]; 1.243 [s, 9H (t-butyl)]; 

1.618 [s, 9H (t-butyl)]; 3.154 [d, 3H (CH3)]; 3.901 [d, 2H (CH2)]; 4.087 [q, 1H (OH)]; 4.862 [d, 

2H (CH2)]; 6.490 [s, 2H (aryl)]; 6.569 [s, 2H (aryl)]; 7.078 [s, 1H (aryl)]; 7.296 [s, 1H (aryl)]; 

7.544 [s, 1H (aryl)]; 7.958 [s, 1H (aryl)]; 8.520 [s, 1H (N=CH)]. ESI pos. in MeOH: m/z = 

885.3900 for [Co
III

(Cl2L
2,4-t-bu

)+ H
+
]

+
. Anal. Calcd for C52H74CoN2O5.5: C, 66.09; H, 7.89; N, 

2.96 Found: C, 65.92; H, 7.52; N, 3.56. 
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Table AI.1. Crystal Data for the complexes 1, 2, and 3.  

 

 

 

 

 

 

 

 

 1 2                3 

Empirical formula  C33H29CoN8O10 C53.5H78CoN4O10 C52H71Cl2CoN2O4 

Formula weight 756.57 996.13 917.94  

Temperature (K) 100.1(2) 100(2) 100(2) 

Wavelength (Å) 0.71073 0.71073 0.71073 

Crystal system, space group Triclinic, P-1 Monoclinic, P21/c Triclinic, P-1 

a (Å) 11.4337(8) 13.196(2) 12.2154(10) 

b (Å) 12.5296(8) 38.556(6) 14.5086(12) 

c (Å) 13.2100(9) 11.3194(16) 14.9325(11) 

α (º) 88.368(4) 90 91.171(4) 

β (º) 66.364(3) 111.054(5) 109.941(3) 

γ (º) 77.712(4) 90 95.805(4) 

Volume (Å
3
) 1690.6(2) 5374.8(14) 2470.8(3) 

Z 2 4 2 

Calculated density (Mg/m
3
) 1.486 1.231 1.234 

Absorption coefficient (mm
-1

) 0.578 0.378 0.500 

F (000) 780 2136 980 

R(F) (%) 6.50 6.59 4.46 

Rw(F) (%) 14.71 16.05 5.48 
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Figure AI.2. Synthetic scheme for the ligands. 
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Figure AI.3. Synthetic scheme for the complexes 1-3 (top to bottom). 
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Figure AI.4. 
1
H-NMR spectra for 1-3 in d

6
-DMSO (top to bottom). 
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Figure AI.5. Experimental (bars) and simulated (line) isotopic distribution for the molecular ions 

of the complexes 1-3 (left to right) in CH3OH. 

                                                                                                                                                                                                     

 

Figure AI.6. The ORTEP representation of the cations of 1, 2, and 3 at 50% ellipsoid 

probability. Bond lengths are in Å: For 1: Co(1)-N(3): 1.874(3); Co(1)-N(7): 1.963(3); Co(1)-

O(2): 1.874(3); Co(1)-O(4): 1.882(3); Co(1)-O(5): 1.897(3); Co(1)-O(6): 1.931(3). For 2: Co(1)-

N(1): 1.875(2); Co(1)-N(2): 1.981(2); Co(1)-O(1): 1.875(2); Co(1)-O(2): 1.888(2); Co(1)-O(3): 

1.896(2); Co(1)-O(4): 1.984(2). For 3: Co1-N1: 1.8565, Co1-N2: 1.984, Co1-O1: 1.882, Co1-

O2: 1.9154, Co1-O3: 1.9407, Co1-O4: 1.9816. 

 

 

 

Figure AI.7. 
1
H-NMR spectra for 1 in d

6
-DMSO after recrystallization from CH2Cl2/CH3CN 

(1:1) mixture. 
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Figure AI.8. UV-visible spectra with the corresponding color for 1-3 in CH3CN (1 x 10
-5

 M). 

 

Table AI.2. UV-visible parameters of complex 1-3 in CH3CN. 

 

 

Figure AI.9. TD-DFT calculated UV-visible spectra for 1-3 by using CH3CN as the solvent 

model. 

 

  λ (nm) |ε (M
-1

cm
-1

)| λ (nm) |ε (M
-1

cm
-1

)| λ (nm) |ε (M
-1

cm
-1

)| λ (nm) |ε (M
-1

cm
-1

)| 

1 379 |21216|   607 |1107| 

2 365 |10880|  565 |9390| 777 |834| 

3 356 |12183| 485 |10048| 507 |10060| 762 |1350| 



www.manaraa.com

240 
 

 
 

 

 

 

 

 

 

 

 

 

Figure AI.10. Cyclic voltammogram of complex 1 in CH3CN. 

 

                                   

 

 

 

 

 

 

 

 

 

 

 

Figure AI.11. Cyclic voltammograms of 2 and 3 in dichloromethane and acetonitrile. 

Conditions: 0.1 M TBAPF6 as supporting electrolyte; Glassy carbon (working), Pt wire (counter) 

and Ag/AgCl (reference); Scan rate: 100 mVs
-1

. 
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Table AI.3. Cyclic voltammetric parameters for complex 1-3 in (a) CH2Cl2 and (b) CH3CN. 

 

(a) CH2Cl2: 

 

(b) CH3CN: 

 

                                                                          

 

 

               Figure AI.12. Spin-density plot for first three reductions of complex 2. 

                                                         

 

 3
rd

 PhO
-
/PhO

● 

E½, V 

(ΔE, V) |ipc/ipa|  

2
nd

 PhO
-
/PhO

●
  

E½, V 

(ΔE, V) |ipc/ipa| 

1
st
 PhO

-
/PhO

●
  

E½, V 

(ΔE, V) |ipc/ipa| 

Co(III)/Co(II)  

E½, V  

(ΔE, V) |ipc/ipa| 

 

NO2/
●
NO2

-
 

E½, V 

(ΔE, V) |ipc/ipa| 

1 N/A N/A 

 

N/A N/A 

 

N/A 

2 +1.00 (0.15) |N/A| +0.68 (0.10) |0.81| 

 

+0.28 (0.11) |0.80| 

 

-0.38 (0.12) |0.75| 

 

-1.32 (0.14) |1.18| 

-1.59 (0.15) |1.07| 

3 +1.02 (0.13) |0.69| +0.65 (0.09) |0.86| 

 

+0.25 (0.09) |1.00| -0.49 (0.09) |1.06| 

  

N/A 

 3rd PhO-/PhO● 

E½, V 

(ΔE, V) |ipc/ipa|  

2nd PhO-/PhO●  

E½, V 

(ΔE, V) |ipc/ipa| 

1st PhO-/PhO●  

E½, V 

(ΔE, V) |ipc/ipa| 

Co(III)/Co(II)  

E½,  [Epc; Epa], V  

(ΔE, V) |ipc/ipa| 

 

NO2/●NO2- 

E½, V 

(ΔE, V) |ipc/ipa| 

C=N/C●-N- 

E½, V 

(ΔE, V) |ipc/ipa| 

1 N/A N/A 

 

-1.06 (N/A) |N/A|          Epc: -0.57 

Epa: -0.32 

-1.79 (N/A) |N/A| 

-1.96 (N/A) |N/A| 

-2.35 (N/A) |N/A| 

2 +1.18 (N/A) |N/A| +0.67 (0.07) |0.64| 

 

+0.30 (0.07) |0.91| 

 

-0.44 (0.17) |0.75| 

 

-1.24 (0.07) |1.01| 

-1.50 (0.07) |1.38| 

        Epc: -2.20 

Epa: -1.94 

3 +1.06 (0.18) |N/A| +0.64 (0.08) |0.85| 

 

+0.25 (0.07) |0.92|          Epc: -0.71 

Epa: -0.43  

N/A -2.24 (0.11) |N/A| 

-2.47 (0.07) |N/A| 
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Figure AI.13. (a) Spectral changes upon electrochemical reduction of the Co
III

/Co
II
 process in 2 

in acetonitrile. The applied potential was –0.40 VAg/AgCl over a period of 10 min.; (b) Spectral 

changes upon second reduction of 2 in acetonitrile. The applied potential was –1.27 VAg/AgCl and 

the graph represents the behavior after 10 min. Inset: Spectral changes upon third reduction of 2 

in acetonitrile. The applied potential was –1.61 VAg/AgCl. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure AI.14. Spectroelectrochemical behavior after phenolate oxidations for complex 2. (a) 

phenolate 1
st
 oxidation (A.P.: 0.78 VAg/AgCl), (b) phenolate 2

nd
 oxidation (A.P.: 1.16 VAg/AgCl) (c) 

phenolate 3
rd

 oxidation (A. P.: 1.68 VAg/AgCl). 

(a) 

(b) 

(a) 

(b) 

(c) 
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Figure AI.15. MO ladder for complex 1-3. 

 

           

 

 

 

 

 

 

 

 

 

 

Figure AI.16. Comparison of MO ladder between HOMO and LUMO for complex 1 and 2 in 

comparison with [Co
III

(L
t-Bu

)MeOH] (Complex 4 from previous chapter). 

1 2 3 
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Figure AI.17. (a) Cyclic voltammetric experiment of 2 in CH3CN in the presence of Et3NHCl                

(0-10 eq) (a) Cyclic voltammetric experiment of 2 in CH3CN in the presence of HOAc (0-10 eq). 

 

 

 

 

 

 

 

 

Figure AI.18. Plot of charge versus time during bulk electrolysis of 2 versus blank in presence 

of HOAc. 

 

Table AI.4. Catalytic parameters for 2 in CH3CN. 

 

Parameters 2  

(HOAc) 

Overpotential (V) (10 eq. HOAc) 0.02 

TON/3h (4.0 X 10
-6

 mol) (100 eq HOAc) 2.4 

Faradaic efficiency (%) 50 

 

(a) (b) 



www.manaraa.com

245 
 

 
 

4 

A pyridine-rich schiff-base ligand was synthesized following literature procedure.
1 

Cobalt was 

introduced in the ligand framework as Co(ClO4)2.6H2O salt. This ligand exhibited unique 

reactivity towards complex formation as it rearranges to form imidazole containing bidentate 

ligand which forms hexa-coordinated complex with Co
II
 (Figure AI.19). We were able to obtain 

the crystal structure (Figure AI.20) of this complex (4) from methanol, which ascertains the 

identity of the rearranged product. Due to the hexacoordinated nature of the final complex we did 

not pursue proton reduction with this. 

 

 

 

 

 

Figure AI.19. Synthetic scheme for the formation of rearranged Co
II
 complex (4). 

 

 

 

 

 

 

 

 

Figure AI.20. The ortep representation of complex 4 with 50% ellipsoidal probability. 

Complex (4). CH3OH. 2.5 H2O: X-ray quality crystal grown from methanol. Yield. 45%. IR 

(KBr, cm
-1

) 3421(s) (OH); 1607 (s) (C=N); 1442 (s) (Ar-C-C); 1090 (s) (ClO4
-
). ESI pos. in 



www.manaraa.com

246 
 

 
 

MeOH: m/z = 642.1565 for [M – 2H
+
]

+
. Anal. Calcd for C37H36Cl2CoN9O11.5: C, 48.27; H, 3.94; 

N, 13.69. Found: C, 47.91; H, 3.58; N, 13.52. Evan’s experiment suggested high-spin 

configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure AI.21. Experimental (bars) and simulated (line) isotopic distribution for the molecular 

ions of complex 4. 
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Figure AI.22. UV-visible spectra of 4 (Spectra: 10
-5

 M) in CH3CN. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure AI.23. Cyclic voltammetry of 4 (Spectra: 10
-5

 M) in CH3CN. 
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The comparison between the crystal structure and the optimized structure revealed the high-spin 

nature of this complex (Figure AI.24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure AI.24. Comparison of bond lengths between the crystal structures with the corresponding 

DFT calculated high-spin and low-spin structure. 

 

 



www.manaraa.com

249 
 

 
 

A pyridine-rich water coordinated cobalt(III) complex (5) was synthesized. To a solution of 

complex (4) (from chapter 7) (1 mmol, 0.589 g) in 10 mL of water, AgClO4 (1 mmol, 0.207 g) in 

5 mL of water added dropwise. The resulting solution was refluxed for 24 hours to generate this 

complex (2). After filtering AgCl precipitate, slow evaporation was performed to get precipitate 

from resulting filtrate. A yellowish colored complex was obtained after 3-4 days. X-ray quality 

Crystals were obtained by recrystallization from acetone/water mixture (1:1). Yield: 75 %. IR 

(KBr, cm
-1

) 3540 (m) (OH); 3245 (w), 3112 (w) (Aromatic-CH); 3048 (w), 2972 (w) (aliphatic 

CH); 1635 (s) (C=O); 1600 (s) (C=N); 1444 (m) (C=C); 1094 (s) (ClO4
-
).

 1
H-NMR [400MHz, 

CD3CN, 300K] δ/ppm = 5.322 [d, 2H (CH2)]; 5.654 [d, 2H (CH2)];  6.052 [s, 2H (H2O)]; 6.991 

[d, 2H (aryl)]; 7.289 [m, 2H (aryl)]; 7.390 [d, 2H (aryl)]; 7.579 [d, 2H (aryl)]; 8.026 [d, 2H 

(aryl)]; 8.100 [d, 1H (aryl)]; 8.260 [d, 1H (aryl)]; 8.537 [d, 2H (aryl)]; 8.706 [d, 1H (aryl)]; 9.169 

[d, 1H (aryl)]. ESI pos. in MeOH: m/z = 470.1027 for [[Co
III

(
C=O

L'1)(H2O) – H
+
]

+ 

 

 

 

 

 

 

 

 

 

Figure AI.25. Synthetic scheme for the pyridine-rich water coordinated Co
III

 complex (5). 

 

 



www.manaraa.com

250 
 

 
 

 

 

 

 

 

 

 

 

Figure AI.26. The ortep representation of complex 5 with 50% ellipsoidal probability. 

 

 

 

 

 

 

 

 

 

 

Figure AI.27. Experimental (bars) and simulated (line) isotopic distribution for the molecular 

ion ([[Co
III

(
C=O

L'1)(H2O) – H
+
]

+
) of the complex 5 in CH3OH. 

 

 

 

 

Figure AI.28.  
1
H-NMR spectra for 5 in CD3CN. 
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Appendix-II 

Crystal Structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure AII.1. X-ray crystal structure of [Co
III

(L
Cl

)MeOH] (from chapter 3). 
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Figure AII.2. X-ray crystal structure of [Co
III

(L
Cl

)MeOH] (from chapter 3). 
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Figure AII.3. X-ray crystal structure of [Co
III

(L
t-Bu

)4-t-bu-pyridine] (from chapter 3). 
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Figure AII.4. X-ray crystal structure of [Co
III

(HL
oxime

)(SCN)2] (from chapter 4). 
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Figure AII.5. X-ray crystal structure of [Co
III

(HL
oxime

)(
4-tBu

py)2](PF6)2 (from chapter 4). 
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Figure AII.6. X-ray crystal structure of [Co
III

(
4-tBu

py)(HL
oxime

)(Cl)]PF6 (from chapter 4). 
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Figure AII.7. X-ray crystal structure of [Co
III

(
4-Pyr

py)(HL
oxime

)(Cl)]PF6 (from chapter 4). 
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Figure AII.8. X-ray crystal structure of [Co
III

(
H

2
O
HL

oxime
)(Cl)]PF6 (from chapter 5). 
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Figure AII.9. X-ray crystal structure of [Co
III

(
imine

L
1
)(Cl)](ClO4)2 (from chapter 6). 
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Figure AII.10. X-ray crystal structure of [Co
III

(
OMe

L
1
)(Cl)]ClO4 (from chapter 6). 
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Figure AII.11. X-ray crystal structure of [Co
III

(
amide

L
1
)(Cl)]ClO4 (from chapter 6). 
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Figure AII.12. X-ray crystal structure of [Co
II
(MeL

2
)(Cl)]ClO4 (from chapter 6). 
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Figure AII.13. X-ray crystal structure of [Co
III

(L
4-NO

2)H2O] (from appendix I). 
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Figure AII.14. X-ray crystal structure of [Co
III

((NO2)2(L
2,4-t-bu

))MeOH] (from appendix I). 
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Figure AII.15. X-ray crystal structure of [Co
III

(Cl2L
2,4-t-bu

)MeOH] (from appendix I). 
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Figure AII.16. X-ray crystal structure of rearranged Co
II
 complex (from appendix I). 
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Figure AII.17. X-ray crystal structure of [Co
III

(
amide

L
1
)(H2O)](ClO4)2 (from appendix I). 
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ABSTRACT 

 

INVESTIGATION OF NEW LIGAND ARCHITECTURES TOWARDS 

PROTON AND WATER REDUCTION CATALYSIS BY COBALT 

COMPLEXES 

 

by 

 

DEBASHIS BASU 

 

August 2015 
 

Advisor: Prof. Cláudio N. Verani 

Major: Chemistry (Inorganic) 

Degree: Doctor of Philosophy 

During my PhD training in the Verani group at WSU, I designed several ligand architectures to 

optimize and understand the redox, electronic, and catalytic properties of their respective cobalt 

complexes towards proton and water reduction.  

      A series of π-donor phenolate ligands of the [N2O3] type were synthesized upon varying 

phenolate substituents from electron-withdrawing halogens to -donating t-butyl. The 

incorporation of cobalt in such ligand systems under aerobic condition generates the Co(III) 

complexes with the ligand oxidized to imine form from its amine counterpart. The redox, 

electronic, and electron transfer properties are greatly altered upon varying these substituents. 

The cobalt complex of chloro-substituted phenolato ligand exhibits catalytic activity in the 

presence of a weak acid such as acetic acid (HOAc) with an overpotential of 0.61 V, whereas the 

cobalt complex of t-butyl substituted phenolato ligand shows catalysis with a much higher 

overpotential of 0.90 V. Bulk electrolysis for the former complex at -1.8 VAg/AgCl confirms 

hydrogen generation with a TON of 11 after 3 hours with a Faradaic efficiency of 85 % in the 
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presence of 100 equivalents of HOAc. This work suggests that electron-withdrawing group may 

reduce the overpotential needed for proton reduction catalysis. Therefore, we synthesized 

cobalt(III) complexes of nitro containing phenolate-rich [N2O3] ligands. The nitro substituents 

are incorporated either in the phenylene bridge or in the phenolate arm. The complex containing 

two nitro groups on the phenylene bridge stabilizes multiple redox species in the reduction side 

of the electrochemical window, and subsequently greatly reduces the overpotential (0.6 to 0.1 V) 

for hydrogen generation from a weak acid such as acetic acid.                                                                       

     We also investigated a π-acceptor ligand such as an oxime instead of a π-donor ligand 

framework to reduce the overpotential for the proton reduction with the corresponding cobalt 

complexes. Homoaxially and heteroaxially substituted cobalt(III) complexes of such oxime-rich 

N4 ligand were synthesized. Extensive characterization of the various redox species by means of 

CV, and 
1
H-NMR titrations, EPR, and UV-Visible spectroscopy and DFT calculations reveal the 

electrochemical equilibria operating for these systems. The Co(I) redox species, the active 

intermediate for the catalysis is found to be 5-coordinate in nature. Hydrogen generation is 

observed in the presense of these complexes with a mild-acid such as trifluoroacetic acid (TFA) 

with an overpotential of 0.35 V, and subsequently confirmed by bulk electrolysis measurements 

at -1.0 VAg/AgCl with a TON between 13-20 after 3 hours with a Faradaic efficiency of 85 %. A 

catalytic mechanism is proposed invoking a heterolytic pathway from Co
II
-H species. To 

incorporate a photosensitizer with this catalytic module, a heterobimetallic [Ru
II
Co

III
] complex 

based on such an oxime as the bridging ligand was synthesized and characterized. This [RuCo] 

complex exhibits electrocatalytic activity in the presence of TFA with the overpotential of 0.37 

V and TON of 7.0 after one hour at -1.0 VAg/AgCl with a Faradaic efficiency of 70%. The electron 

transfer study and the photocatalytic activity of this complex towards hydrogen production are 
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under investigation in collaboration with Dr. Karen Mulfort in Argon National Lab. 

     We designed a ligand framework based on a pentadentate oxime due to the 5-coordinate 

nature of the Co(I) active species towards proton reduction. Therefore, a Co(III) complex of such 

[NN'2N''2] ligand was synthesized. This complex incorporates an aqua ligand during the 

complexation reaction. Proton reduction activity is shown by this complex in the presence of 

acetic acid with a very low overpotential of 0.24 V and TON of 14.7 after 3 hours at -1.7 

VAg/AgCl. A catalytic mechanism is proposed invoking a heterolytic pathway from Co
II
-H species. 

This complex is water soluble due to the presence of various polar groups such as -NH and -OH. 

Water reduction activity is observed with an overpotential of 0.65 V with a TON of 6,000 at -1.7 

VAg/AgCl after 18 hours. The active species for catalysis in water is found to be cobalt-based 

nanoparticles. 

         To continue to explore and study complexes capable of performing catalytic water 

reduction, cobalt complexes of two pentadentate pyridine-rich [N2N
py

3] ligands were 

synthesized. One of the ligands is susceptible towards oxidation upon complexation and forms 

the corresponding Co
III

-amide complex. This oxidation is prevented by incorporating a methyl 

substituent on that particular nitrogen. Both complexes show catalytic proton reduction in the 

presence of acetic acid with an overpotential around 0.70 V with TON of 15 after three hours at -

1.7 VAg/AgCl with a Faradaic efficiency of 90 % in the presence of 100 equivalents of HOAc via a 

heterolytic pathway from a Co
II
-H species. These complexes are water soluble and perform water 

reduction activity with an onset overpotential of 0.55 V (amide), and 0.70 V (amine). Bulk 

electrolysis at -1.7 VAg/AgCl confirms the presence of hydrogen with TONs of 7,200 and 6,000 

after 18 hours with a Faradaic efficiency around 95 % for amide and amine containing 

complexes, respectively.  
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